Astrobee:
ROS-based Flight Software for a

Free-flying Robot in Microgravity

Andrew Symington
Stinger Ghaffarian Technologies | NASA Ames

On behalf of the Astrobee Flight Software Team

Lorenzo Fliickiger (lead)
Kathryn Browne

Brian Coltin

Jesse Fusco

Theodore Morse
Andrew Symington

@/ nasa.gov/astrobee 0 github.com/nasa/astrobee

‘R‘ iﬂ& What is Astrobee?

e Astrobeeis aone square foot free-flying, holonomic robot
e Designed to operate inside the International Space Station

e Theobjective is to use the robot

o toconduct surveying tasks,

o asaremotely operated pan-tilt camera,

o andto carry out scientific experiments.
e Designed to ultimately operate without crew assistance

e Software is open source and upgradeable on-orbit

Astrobee: A new platform for free-flying robotics on
@ the international space station. Trey Smith, Jonathan
Barlow, Maria Bualat, Terrence Fong, Christopher
Provencher, Hugo Sanchez, Ernest Smith et al. In AIAA
2 SPACE 2015 Conference and Exposition (p. 4643).

¥ v

45TROB(?€ p

e Astrobeereplaces the 4kg SPHERES robots
o Most-used payload on the ISS

o Limited processing resources, CO2 and non-rechargeable batteries
e Other Free-Flyers on the space station

o IntBall - 1kg free-flying camera

o CIMON - 5kg Al-based assistant for astronauts

[nasa.gov]

SPHERES

Yy

Speaker/Microphone SciCam NavCam Nozzle (12x) SpeedCam

Battery

Laser Pointer

Perching
Arm

HazCam

Inside:
HLP, MLP
and LLP

processors

PerchCam

Touch Screen
Aft Flashlight

Forward Impeller (2x)
Flashlight Signal Lights DockCam

‘ Hardware: Dock ((-,3

ASTROBE®

Exhaust Scoop — . T —
ooling Fan

Main Power Switch

%~ «— Power Connector

Data Connector

Fiducials

Project State

Hardware design complete

Hardware assembly in process

Currently undergoing tests

o

o

o

O

o

o

Functionality
EMI
Acoustic
Vibration

Thermal

Software upgradeable on-orbit
Dock launch likely NG-10
Three robots to follow in 2019...

ROS@%ZOI&
w % Processors and Connectivity

Ground Station
(Earth) Free-Flyer (ISS)

e High-level Processor (Android) .
o Guest Science i
e Mid-level Processor (Linux)
o Executive i
o Mobility
o Localization E
o Communications DDS MLP | ROS E
e Low-level Processor (Linux)

o State estimation Dock (ISS)

o Control
o Actuation

o Signaling

ROSCOnI2075
)

Propulsion System

MADRID

Two propulsion modules per robot -- port and starboard sides

Each propulsion module has

O Onecentrifugal impeller

o Oneplenum

o Six nozzles

Impellers counter-rotate to balance torque
Force and torque coupled in plenum pressure
We hold impeller speed constant

Control vector - Six nozzle apertures

Advantages - No propellant, rechargeable, no exposed rotors

Disadvantages - Limited power, microgravity-specific

aos@ﬁzwe
) “
" 5 &

Motion Control Pipeline

registrations

Cameras

images

Localization

features

Filter

inertial

IMU

pose / twist

wrench

Depth Camera
point clouds
map
> Mapper
i Planners
obstacles
o> Choreographer Propulsion
trajectory
command blower | nozzle
speed | values
Controller Force Allocation

ROS@%ZOI&
. ‘.-“r ° ° e \
‘ & Localization Gy

ASTROBE®

e Three sensing modalities

o Inertial Measurement Unit - Epson M-G362PDC1
o RGB camera - Imaging Source 42BUC03-ML
m HFOV:Front 110.8°, Aft:85°

n 1280 x 960 pixels, Global shutter
o Depth camera - PMD PicoFlexx

] HFOV: 62°,0.1-4.0 mrange
m 224x172pixels

e Threelocalization pipelines

o Sparse Mapping - General navigation

o Marker tracking - Used for docking

o Handrail tracking - Used for perching

e Augmented-state EKF fuses inertial with localization pipeline features

10

ASTROBE®

e Offline

o Capture aset of video or images
o Bundle adjustment
o Output is sparse feature map
e Online
o Detect BRISK features <uv>
o Find corresponding feature <xyz> in sparse map
o Wealso use features from visual odometry

o Features used as EKF corrections

Free-Flying Robot. Brian Coltin, Jesse Fusco, Zack
Moratto, Oleg Alexandrov, and Robert Nakamura.
International Conference on Intelligent Robots and
Systems (IROS), Daejeon, 2016, pp. 4377-4382.

@ Localization from Visual Landmarks on a

11

i %ﬂi Localization: Docking

Docking demands greater localization accuracy
Augmented Reality (AR) targets provide richer features -
Arrangement of 11 targets supports a wide range of views .
Dock pose is bootstrapped from general navigation

During docking localization is performed relative to dock

i ¥y ey

N ASTROBE® <

e Detect and localize with respect to handrails

e Processing depth cameraimages
o Plane (ISS wall) estimation with RANSAC
o Line (Handrail) estimation with RANSAC
o Handrail end point detection
o Pose estimation

o Landmark sampling

e Landmarks used as filter corrections

Handrail detection and pose estimation for a

@ free-flying robot. Dong-Hyun Lee, Brian Coltin,
Theodore Morse, In-Won Park, Lorenzo Flickiger, and
Trey Smith. International Journal of Advanced Robotic
Systems. Published January 17, 2018

*R%@ Motion Planning

Choreographer provides an extensible planning interface

Baseline ‘trapezoidal’ planner
o Plansstraight lines between poses
o Trapezoids on velocity and angular velocity
o Agnosticto zones or obstacles

o Useful for docking and perching

Quadratic Program ‘qp” planner

o Written by Mike Watterson

o Generates curved trajectories
o Minimizes jerk

o Respects zones and obstacles

Other planners currently being written...

N 4STROBES A

Planners enforce limits on

o Acceleration - hardware limited by plenum pressure

o Twist- hardware limited by speed camera
Planners also abide by keep-in and keep-out zones
Must also stop on detecting an obstacle in path
Needs to be robust to outliers

We used OctoMap on depth camera measurements

o Wedon't do free-space updates
o Bresenham (line drawing) on current trajectory

o Collision checking between line and map

Runs in real-time on ARM platform

Developed by an visiting student, Marcelino Almeida

Safe Operation - Limits, Zones & Obstacles

tojon_

y]
R
o\

)\ AsTRoBEE. A

xzo?»'c;ﬁ?g’/e v v
ﬂ % Hardware Test Environments G

45TROB(?£ p

e Howdo we hardware test our hardware?
o FlatSat - avionics core, no body or propulsion
o Granite Laboratory - 3DoF only, propulsion used

o Micro-Gravity Test Facility - 6DoF, propulsion emulated by gantry/gimbal

16

ROS@%?‘O{&
‘ ﬁ Simulation

e Software includes a realistic and representative simulation of two worlds
o International Space Station (iss)
o Granite lab (granite) FLIGHT SOFTWARE

e Simulation is written as sensor / model plugins for

e Weuse ROS messages / services as a hardware abstraction layer :::ROS

e Most code that runs in simulation will run on a real robot

e Important: We don’t simulate computer vision ACTUAL DRIVER SIMULATED DRIVER
o Sparse mapping

o Marker tracking

o Visual odometry
e We canspeed up the simulation to run faster than realtime

o Limit: generating point clouds / images, calling sequential localization / GNC
17

: 4 Simulation: Granite Lab Gy

PERCEPTION [oo oo oo = - | SIMULATION i i i 0 REALITY

Scene 9
s e Ll
——fe : E — W

0| DEBUG: DockCam “
e Property Value

I el Tims Factor: Sem Time Raat Time: trzea

era == Measure ¢ 2D Pose Estimate

~ 2DNavGoal @ Publish Point S I M U LATIO N) Z -~ -

Scene

Spherical Coordinates

Physics
w Models
2
» dock
v iss
b Lights
Property Value
name issbody
self_collide @ ralse ~
gravity W Fase -
Kinematic W Faise
canonical ® True
» pose : N
) inertial
» collision iss:zbody:body_t.
» coliision isszbody::body ,—E 'f‘
P collision issz:body::body_f.
» collision iss:zbodybody_t. .
) collision iss:zbody:body_f.
z » coliision iss:zbody:body_f.
LR » coliision iss: um? bojz:(
» & Global Options ~ Sen e ss-body
B B A e E Check back
» @ TF o/ P visual isszbody::body f.
B Gri i g » visual iss:zbody:body_f. .
» visual iss::body::body_t In 20 1 9
P visual iss::body::body f.
P visual iss::body::body_f.
) visual isszbody:body_f.

#h, Bumble
#h, Queen

» B Actuators
v & Sensors

Add

INAEQEEREE®

Il . Real Time Factor: Sim Time Real Time: ltera

‘3“* Ground Truthing: HTC Vive

How to measure localization performance?
HTC Vive Tracking 1.0 system
Basic operating principle

o Lighthouses and trackers

o IR sync pulses and laser sweeps

o Inertial measurement unit

o Sensor fusion

Miguel Borges’ IROS 2018 presentation

HTC Vive: Analysis and Accuracy Improvement.
@ Miguel Borges, Andrew Symington, Brian Coltin, Trey
Smith, Rodrigo Ventura. International Conference on

Intelligent Robots and Systems (IROS), Madrid, 2018.

Ground Truthing: Initial Results G

) AsTRORE® 4

Error between Vive and EKF position estimate (mean = 18.519mm, dev = 10.888mm)
500 T T T T T

0

i}

Q

E

&

Gl

c

5=

T

Q

g- ... il
o

i L i
60 80 100 120

Millimeters

21

‘365 ROS and Astrobee (%34

45TROB(?€ p

e ROS Indigo and Kinetic have been invaluable tools for Astrobee
e We've been using DDS for a while at NASA
e So,we'’re excited about ROS 2.0

o Intheshort term, upgrade unlikely due to limited resources

o Inthelongterm, perhaps a community-driven upgrade?
e Other projects within the IRG
o Tensegrity, K-REX

22

¥ i"ﬁ ROS: Timeouts on Actions

Problem - in a single threaded NodeHandle context, to safeguard against service locking we needed to use actions

to manage long-running tasks. But what if the action server dies midway through a goal?
o Each nodelet could in theory manage all timeouts, but the code gets verbose

e Solution - a wrapper for the SimpleActionClient that manages timeouts in a clean way

e Weaugmented the class with the following functions .
class FreeFlyerActionState {

o SetConnectedTimeout(...) public:
L enum Enum {
o SetActiveTimeout(...) SUCCESS - 1,
o SetResponseTimeout(...) PREEMPTED = 9,
ABORTED = -1,
o SetDeadlineTimeout(...) TIMEOUT_ON_CONNECT = -2,
TIMEOUT_ON_ACTIVE = -3,
e Added extraresult codes to the result callback TIMEOUT_ON_RESPONSE = -4,
o void ResultCallback(FreeFlyerActionState::Enum, ResultConstPtr const&) }_TIMEOUT‘ON‘DEADLINE =5
s

23

‘3“& ROS: Configuration Files

require "context"

e Problem: YAML works well, but it does have a few drawbacks
parameters = {

o Nosupport for complex data types - matrices, structures, etc. {

o . . id = "enable_obstacles”,
o Noscripting support (cannot link variables) reconfigurable = true,
type = "boolean",

o No context support beyond selecting which YAML file is loaded default = false,

e Solution: We use LUA files, and access them through a C++ API. unit = "boolean”,
description = "Enable obstacles?"
e Optional ConfigServer and ConfigClient \ }

o Uses dynamic_reconfigure messages, so works with rgt_reconfigure
o Enables dynamic reconfiguration of a node at runtime

m ReconfigureCallback(...) - -

o Requires well-specified LUA config file
. .) config_server config_client
o Configuration persists on rosparam server choreographer.config

o Resilient against a node restarts
e
param server

24

‘i“& ROS: Namespaces, Faults and Lifecycles [.,3

ASTROBE®

e Problem-Werequired a clean pipeline for communicating the robot namespace, asserting system faults,
checking if nodes have died and a mechanism for starting, stopping or restarting nodes as needed.
e Solution - We developed a wrapper class around Nodelet, called FreeFlyerNodelet. All nodes in our software

inherit from FreeFlyerNodelet, and are therefore also Nodelets. Our wrapper class:
o Transparently sends a heartbeat on topic /heartbeat while the node is alive.
o Provides an AssertFault(...) function that the child class can call to notify the system of a fault.
o Provides the ability for a node to query the namespace of the robot on which it is running.

o Provides the ability for a node to send diagnostic_msgs
e Faultinformation is gathered by executive, which can load / unload the nodelet from the manager as needed
e Our hardwaredrivers are also FreeFlyerNodelets

o How does this work with Gazebo dynamic library loading?

o Workaround: Gazebo plugin calls FreeFlyerNodelet::Setup(...), which bypasses Nodelet::onlinit(...)
25

‘i“& ROS: Cross-compilation for ARM G

ASTROBE®

e Problem-Backin 2015 we had great trouble linking ROS packages against an ARM rootfs. This was mainly
because the cmake scripts auto-generated by catkin hard-coded the full library paths
e Solution - Forking catkin and adding code to rewrite the library path in a cross-compile context

e Although it works well, there is definitely room to improve our build system

o Migration to catkin_tools, catkin_simple, etc.

if (${component}_LIBRARIES)
set(temp_LIBRARIES)

foreach(library ${${component}_LIBRARIES})
string(REGEX REPLACE "*/usr/lib" "${ARM_CHROOT_DIR}/usr/1lib" library ${library})

string(REPLACE "i386-linux-gnu" "arm-linux-gnueabihf" library ${library})
string(REGEX REPLACE "*/opt/ros/kinetic" "${ARM_CHROOT_DIR}/opt/ros/kinetic" library ${library})
list(APPEND temp_LIBRARIES ${library})

endforeach()
set(${component}_LIBRARIES ${temp_LIBRARIES})

endif ()

26

27

Problem - Parts of our code are released as Debian packages, either for x64 or ARM. In some cases these

packages link against libraries provided by ROS. If the library locations change, it breaks our build.

o Thegreat OpenCV 3linker errors of 2017: https://github.com/ros-perception/vision opencv/issues/193

Solution - Continually test and release fixes as needed.

o Thiswon't be a problem on-orbit until we upgrade.

o Wehave release scripts that build and release Debians rapidly.

Aptly is perhaps a good choice for us?

[nasa.gov]

https://github.com/ros-perception/vision_opencv/issues/193

‘Rin& ROS: Launch System

e Problem - over time, our launch folder started to contain -

a great number of task-specific launch files. We needed a

launch system that enabled us to customize which nodes

were launched and where ff_nodelet.launch sim_start.launch
e Solution - machine tags and modular launch file hierarchy

e Following arguments supported:
o llp/mlp/sim: hostname for <machine> tag ,
o nodes: limit to launching a specific set of nodes LLP.launch MLP.launch sim.launch

o ns:namespace of robot

e Example: Simulation with MLP-in-the-loop drivers-=true drivers-=false
: — l1p:10.42.0.x lip:local
o roslaunch sim.launch mlp:=10.42.0.32 mip=10.42.0.y mip-=local
granite.launch astrobee.launch spawn.launch

28

‘ iﬂ& ROS: TF2 Transform Consistency

e Problem - How to ensure consistent extrinsics between perception and simulation? — g -

o Our software defines extrinsics in LUA and broadcasts as world -> sensor TF2 transforms
o Gazebo simulator requires transform declared in the model SDF / URDF

o Probably very hard work to have xacro inject values from LUA into SDF

e Solution - Each simulated sensor plugin listens for a TF2 transform describing its

extrinsics, and adjusts its pose in response to this information

|@] DEBUG: DockCam

e Future work: add noise perturbation to extrinsics

e Biggestimplementation challenges

o Sensor:SetPose(...) in Gazebo 7.x doesn’t seem to also adjust the Ogre camera pose

o Different conventions in camera frames between our software and Gazebo

e Remaining bug - Gazebo GUI sometimes doesn’t update when SetPose(...) is called.

29

ROS@O::Z?{&
‘35 Guest Science

e Guest Science the mechanism for partnering with Astrobee to run experiments

o Hardware - develop a payload with USB connectivity to Astrobee

o Software - runs on the HLP
e Software development process

o Android application loaded on HLP
o Quad-core smartphone-clase ARM processor

o Communication with ground over DDS
e First Guest Scientists - REALM

o RFID-based Inventory management on ISS
o REALM-2 adding reader to Astrobee

e Moreinformation

o https://www.nasa.gov/content/guest-science-resources

30

https://www.nasa.gov/content/guest-science-resources

ROS@%?‘O{&
‘ % Zero Robotics G

ASTROBE®

e Programming competition for school kids in the US and Europe Z E R e
e Everyyear thereis anew game developed by MIT e ;
" ; o ©BOTICS

ISS PROGRAMING CHALLENGE

e Teams write code to control a SPHERES robot in microgravity

e Teams first compete against each other in simulation
e Championships are held on the ISS using SPHERES robots

e Development underway to transition to Astrobee

o MIT students currently prototyping game

o New use cases for flight software and simulation
e For more information

o http://zerorobotics.mit.edu

o https://robotics.nasa.gov/events/zerorobotics.php

31

http://zerorobotics.mit.edu
https://robotics.nasa.gov/events/zerorobotics.php

goSCon 2015

& Open Source Release - Currently v0.4.x [u-_-

32

MADRID

e We're excited to offer arepresentative simulator for microgravity
robotics research that is built upon open source community tools

e Youcanfind all of our code here:

o https://github.com/nasa/astrobee

e We actively encourage you to checkout the code

e Pullrequests
o We're always looking to improve our software
o Contributions are warmly welcomed!
o Although, you'll need to sign some paperwork before we can accept it

e Mechanical designs, schematics and firmware are not open source

NASA
INDIVIDUAL CONTRIBUTOR LICENSE AGREEMENT

I order 10 clari fy the miellectsal property license ganted WA (‘unm’bunnm from any | rcwn of ensity, The
United Stases of Americe s sepresemmed by the
(™NASA") mist hm.c‘mmm Luuu Ageemeot (" Amu o('LM'bnn fluhlhnbm signed by each
Contritator, indicat ioanes torms below. Theee terms 2pply % Yosr Contributions 1o Astrebee
Robot Software TARS) %1, ARC- o (*Project Saftware*), inchuding wource code, cbject ode and
accompunying documestation, any. This license is for Your peotection 35 5 Contributar as well a5 the protostion of
NASA: 1t docs st change Your rights 1o % Your Castributoas foe any other purpose.

Plesse read fhis Apreement canedelly bafiore sigring, and keep s copy for your record.

i Deflnit

A Vouoe \nurnmmempyngup-mxma Jeal entity suthoriasd by the copyright!puiet owner Sar
zuimgllmigvmwlm‘(muafumulw For legal entitics, the catity making a Cont rmlmnmd-u
other entities that contrel, arare undec with that

single Cantrisusce. For the purpases of this deflnition, "coomul” means (1) the pawer, nmmmle):mne
amumnuugumnfmhmry whetaee by conmact o oiberwise, or () swnersip of Sty percent (SU%) ce

more of the f sech anciy.
B “Coatribusica® mms-,wm.mmvmm\mh.mmpmyv/aumm,uumummsm
submit, fhat is a ModiF and that Youtn NASA for

aclusicn in, o documentation cd e Project Software,

€ *Contribusor” means NASA, as the criginal developer of the Projoct Saftware, and any person ar entity that

makes 3 Comributicn 1o the Project Softwre

n *Desivative wur shani m [nn-mg pruvidad s Soction 101 of Tt 17, Ualted Ssnes Code (Copyrighis).
inclodisg ad: delecion oor.

m-«m-w iochudes Dervative Weeks,

F. *Recipine” means smycne who acquires fhe Project Software, or any Contribrtions or Modficatioss 10 the
ject Software.

G Acmn(bamn Is xnnmmm y zm.L or written

systems, and e

acking sywems o e mamped by, cron betulf of, NASA for the surpose of discussing and imgmoviag the Preject

Softw, You may exclude 2 mnlmalhmnn with NASA from beleg 2 Contribation if the communication s ina
marked or

{n writing by
o s "Not a Conwibietion.”

H. "Week means an crigimal work of authorship fixed in any taagible medium of expeession zow known ox later
dovsloped, from which 7 cae be perceived, repeoduced, or otherwiss commumicated, either directly oe with the aid of
amachine or deviee, which & protected by copyTight. Including Derivave Woeks.

Coatribnor Grant of Copyright License, Subfoct to the teems and cunditioss of fis Agreement, You heroby grant
w‘l»\SAWmewmockmmSeﬁwuwdumhmi by NASA 3 perpetmal, non-exclusive, worldwide, rovalty-
free, imevocablo (excopt s serted in Section 4) copyright icense 10 usa, disibrte, reproduce, modify, redistritute,
peepare Derivarive Works of. publiely display, publicly perfor, e sublicense Yoar Contributions and sach
Derivative Warks.

3 Ws\qmmmmmmnmmdmwmvammmm
NASA and ipiems of Project Safty 8 pespetust, usive, workdwide, ro;

free, Ireevoceble (except e stated nmmnt)wmuumwmmummMmmmesen
offer 1o sall, import, and otherwise transfor Your d Derivative such licozse
Ywﬁmmmnmlymfrluﬁbmevammsinmo‘by

coenhinatioa of Your Coserbutioes with the

4. Ifamy Rocipient, imtitues pevent cc copyright litigation apsinet VASA e any other Rocipient (rn:lnau v s
claem or awsal) e that
Project or coatribatony pavent cepyright i then any mm)

"

https://github.com/nasa/astrobee

‘w ;“5 Thank you & Video g

) AsTRORE® 4

FLIGHT SOFTWARE

GETS A NEW SIMULATOR AND VISUALIZATION TOOLS {2x)

https://docs.google.com/file/d/12XyWWy5lip7h4BZKJNEcN7RAHS4rfuui/preview

