

552

Optimization Motion Planning with TrajOpt and Tesseract for Industrial Applications

Levi Armstrong and Jonathan Meyer Southwest Research Institute 30 September, 2018

Outline

- Background
- TrajOpt
 - History
 - Motivation
 - Capabilities
 - Future
- Tesseract
 - Motivation
 - Capabilities
 - Future
- "Hybrid" Planning

TrajOpt: History

- UC Berkeley, John Shulman
- Sequential Convex Optimization
- Solves non-convex optimization problems

"Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization" John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow and Pieter Abbeel

- Southwest Research Institute launched an internal IR&D project to integrate the existing motion planner TrajOpt (Trajectory Optimization for Motion Planning) into ROS.
- The integration of TrajOpt necessitated new capabilities that spawned the creation of several new packages: *trajopt_ros* and *tesseract*.

Motivation

- Current Industrial Problems
- Process Planning
 - Cartesian Planning with process constraints and leverage redundant degrees of freedom
 - Leverage secondary constraints
- Human expected paths
 - Reduce the Pucker Factor
 - Smoothness
- Improve robustness through plan reuse.
- Higher level framework for process definition

• 8DOF

- windows\puzzle piece.avi

- 10 DOF
 - windows\puzzle piece with positioner.avi

TrajOpt: Conversion

Package trajopt_ros

- Direct Port of Core
- Swapped OSG Viewer with Rviz
- Swapped kinematics using OpenRave with *tesseract* kinematics (KDL).
- tesseract_collision
- Removed Commented Code
- Exposed optimization parameters

TrajOpt: Capabilities

- Existing Costs/Constraints
 - Cartesian Pose
 - Semi-Constrained
 - Fully-Constrained
 - Cartesian Velocity
 - Collision
 - Discrete
 - Continuous
 - Joint Position
 - Joint Velocity

- Existing Costs/Constraints
 - Freespace motion planning
 - Cartesian motion planning
 - Combination of both
 Freespace and Cartesian
 motion planning
 - Each Cost/Constraint is time-step specific
- New
 - Joint Acceleration
 - Joint Jerk
 - Conical

Tesseract: Motivation

- TrajOpt Requires
 - Convex hull collision checking
 - Accurate minimum translation vector
 - Access to Kinematics and Dynamics
 - Parameter Limits
 - Joint Limits

- Industrial Automation Focus
 - Tool Changes
 - Multi Robot Planning
 - Scene Building
 - Kinematic chains and arbitrary trees
 - Integrated Time
 Parameterization

Tesseract: Motivation

- Testbed:
 - Environment
 - Collision Checking
 - Kinematics
 - Dynamics
- Fully understand the capabilities of TrajOpt
- Single Environment
- Continuous Collision Checking

Tesseract: Capabilities

- tesseract_core
 - Contains platform agnostic interfaces and data structures to be used.
- tesseract_ros
 - ROS implementation of the interfaces identified in the tesseract_core package, currently leverages Orocos/KDL libraries.
- tesseract_collision
 - ROS implementation of a Bullet collision library. It includes both continuous and discrete collision checking for convex-convex and convex-concave shapes.
- tesseract_msgs
 - ROS message types used by Tesseract.
- tesseract_rviz
 - ROS visualization plugins for Rviz for both the environment state and trajectories.
- tesseract_monitoring
 - Monitoring the active environment state and publishing contact information.
 - Environment monitor (A direct copy of MoveIt! API)
- tesseract_planning
 - Contains interface bridges between Tesseract Environment and motion planners OMPL and TrajOpt.

Tesseract: Collision

- Single Environment
- Profiled Code
 - Affine3d
 - Environment Construction for every check.
- Non-ThreadSafe
 - Clone Method
- Individual Object Distance Limits
- Implementations
 - Bullet
 - Discrete
 - Continuous (Cast)
 - FCL
 - Discrete (Experimental)

sd < 0

T: Continuous Collision Checking

Glass Up Right

🐴 Interact 🕆 Move Camera 🛄 Select 🚸 Focus Camera 🚥 Measure 🖌 2D Pose Estimate 🖌 2D Nav Goal 💡 Publish Point 🔶 🛶

🕐 Interact 👘 Move Camera 🛄 Select 🚸 Focus Camera 🚥 Measure 🖌 2D Pose Estimate 🖌 2D Nav Goal 💡 Publish Point 🔹 🛶

Hybrid Planning

- What can we do with Trajopt/Tesseract?
 - Lots!
 - Optimization opens new doors!
- A quick note on underconstrained path planning
 - DoF Actuators > DoF of
 Problem

- Optimization good for:
 - High DOF
 - "Dynamic" Costs
- Where does it fall short?
 - Local minima
 - Initial condition
 - Trillions of parameters

Naïve Seed

• windows\barrel_opt.avi

Descartes

🖉 🛄 ROS

industrial

Hybrid Approach

• windows\barrel descartes optv2.avi

• windows\gantry.avi

- Core Packages
 - <u>https://github.com/ros-industrial-consortium/tesseract</u>
 - <u>https://github.com/ros-industrial-consortium/trajopt_ros</u>
- Examples
 - <u>https://github.com/Jmeyer1292/hybrid_planning_experi</u> <u>ments</u>
- Original Implementation
 - <u>http://rll.berkeley.edu/trajopt/doc/sphinx_build/html/</u>

Contact Information

Levi Armstrong

Group Leader

Southwest Research Institute 6220 Culebra Road San Antonio, Texas 78238

Phone: (210) 522-3801 Email: levi.armstrong@swri.org

www.swri.org

www.ros-i.org

14 June, 2016

Contact Information

Jonathan Meyer

Github: @jmeyer1292 Email: jmeyer1292@gmail.com

