Simble

On Use of the Spatio-Temporal Voxel Layer:

A Fresh(er) look at 3D Perception for the Planar World

Steve Macenski, Simbe Robotics

Background - Navigation and Costmaps

Background - Navigation and Costmaps

Background - A Motivating Example

Limited to 16 binned heights - limited representations for tall or large robots

Dynamic obstacles can leave trails - requires suboptimal work arounds

Not all modern sensors are dense integral images - use cases have expanded

No temporal clearing - maintaining data from potentially weeks ago

High CPU load for multiple sensors - untenable for full and/or redundant coverage

Background - A(nother) Motivating Example

Chasing WALL•E. Followed him for 3 aisles. @simberobotics

6:29 PM - 3 Jul 2018 from Schnucks

Simbe Robotics @simberobotics

Tally made some new friends in this @SchnuckMarkets store over the weekend. Thank you, @StandefordL for sharing and introducing the next generation to our friendly robot!

1:59 pm - 6 Jun 2018

Spatio-Temporal Voxel Layer (STVL)

General Purpose Voxel Grid and Costmap2D Layer Use: depth cameras, VLP-16, RADAR, and more Fast access to voxels and manipulation with OpenVDB Temporal clearing and configurable acceleration models No assumptions on a static environment or map size No maximum number of voxel height constraint Used with 10+ depth cameras at once

STVL - OpenVDB Basics

DreamWorks Animation

- Used in *How to Train Your Dragon* and 70+ others Low memory overhead - highly optimized octree O(1) voxel query/access Contains structure and tools to manipulate voxel grids Fast, elegant tools adequate for soft real-time robotics
- ... and so much more

simbe

http://www.museth.org/Ken/Publications files/Museth TOG13.pdf

STVL - Models & Time

Traditional frustum modelled as bounding planes Given: FOV and min / max reading distance Find: relative pose of a point to each plane \rightarrow If on correct side of all 6, interior to frustum

Acceleration modelled as linear / exponential decay

The "Aisle Problem": Adjacent aisles' voxels may be accelerated but not viewable Proposition: This is not undesirable in dynamic environments, the state of that space unknowable to an agent. \rightarrow Will likely be cleared anyhow from global decay before returning.

Configuration and Use

Key Parameters

Layer Parameters: Voxel Decay Decay Model Observation Persistence Default: **0** s Publish Voxel Map Mapping Mode

Default: **0** s None, Linear, Exponential Default: **False** Default: **False**

Observation Parameters: Voxel Filter Default: **False** Min / Max Z Default: **0 m** Vertical / Horizontal FOV Default: 0 rad Decay Acceleration Default: **0 1/s2**

Several Preconfigured Profiles available in documentation

Configuration and Use

Other Notes

Velocity scaling: The faster you move, the more data you want to store No hard boundary like existing layer implementations

Local Costmap: Recommend faster decay 1-15 seconds with good coverage Covers smaller area and runs faster

Global Costmap:

Recommend slower decay 5-45 seconds with good coverage Covers larger area and runs slower

Want Only The Most Recent Measurement? Non-Persistent Voxel Layer may be for you

simbe

https://github.com/SteveMacenski/nonpersistent_voxel_layer

Examples

Temporal clearing band gaps - raycasting ineffective

simbe

Frustum clearing with linear acceleration model

Brief Incursion into Mapping...

Hijacking the costmap layer

Naively recorded voxels as seen from sensors

Trivial to 3D map a 60,000 sq.ft. environment

Less than 7 MB on disk

Convenience methods provided to transfer OpenVDB serialization types to ROS-y types

No assumptions made about a static environment, Frustum clearing removed dynamic obstacles Not intended use-case

What's Next? (Call for Action)

Navigation

Support 3D LIDAR frustum acceleration models

Split and Merge OpenVDB trees for parallelizable sensor processing

Already iterating through local grid, let's use it: Improved spatial reasoning using CCA Integrated 3D blob dynamic obstacle tracking / response

Mapping Standalone node + Binary Bayes Filter = Octomap-like 3D mapping

Using as the engine for an integrated 3D SLAM solution

Processing 9 or more sensors

Repository, Documentation, and Issue Tracker: (Current) https://github.com/SteveMacenski/spatio_temporal_voxel_layer (Soon to be) https://github.com/SimbeRobotics/spatio_temporal_voxel_layer

ROS Wiki Page: http://wiki.ros.org/spatio_temporal_voxel_layer

We're Hiring! https://jobs.lever.co/simberobotics.com

Thanks to Other Active Contributor *David Tsai*

Steve Macenski Senior Robotics Engineer steve@simberobotics.com stevenmacenski@gmail.com

