
Quality Assurance Initiatives for ROS
 Tool Development (Part II)

Zhoulai Fu
Sep 29, 2018

IT University of Copenhagen

!1

Software

Reliability

!2

An Important Goal: Making ROS (more) Reliable

ROS

Innok Heros

Irobot Roomba

Erle-Copter

Simbe
Tally

NASA
Robonaut

Bosch RTC Segway

!3

❖ Dealing with ROS-specific challenges
❖ Reusing existing tools
❖ Demo from our on-going work

!4

Since 2017, we have been working on

how to test ROS automatically

This talk:

Challenge 1 in testing ROS: Lack of specification

- Turtlesim package

- Expected: draw square

- Bug: Turtle spins after 3/4

ROS bugs often occur ”silently”

!5

Challenge 2 in testing ROS: Lack of “good” test drivers

❖ Test drivers launch ROS components

❖ Good test drivers fail ROS components

!6

Our solution: If you don’t have it, try to get it

!7

Existing, mature stuff

❖ Challenge 1: Lack of specification ==> Use sanitizer

❖ Challenge 2: Lack of good test drivers ==> Use fuzzing

What is sanitizer?

❖A build-in compiler option in GCC and Clang
❖Automatically inject assertions: division-by-

zero, array index out of bound

Sanitizer

Demo available offline
!8

What is fuzzing?
❖ 1989 experiment from Univ. Wisconsin

❖ Pure random testing crashed 1/4 of the tested Unix utilities

❖ Fuzzing = Smart random testing

❖ Numerous bugs detected by fuzzing

❖ Microsoft, Google and many companies use fuzzing daily

Software as blackbox

Random Inputs Output observer

!9

!10

Spec-carrying ROS

ROS package

Step 1: Inject specification with sanitizer

Step 2: Crash the package with fuzzing

!10

Demo from our on-going work

!11

Conclusion on Tool Development part

❖ Build reliable ROS components

❖ We reuse existing solutions: sanitizer + fuzzing

!13

Thank you! Questions?

Meet us at ROS-Industrial booth #10

