
ROS 2 on Autonomous Vehicles

Ⓡ

Christopher Ho
Sumanth Nirmal
Juan Pablo Samper
Serge Nikulin
Anup Pemmaiah
Dejan Pangercic
Jan Becker Shinpei Kato

© 2018 Apex.AI, Inc.

Autonomous vehicles will…
…give hours back to commuters,
…change the way the world is connected,
…disrupt industries, and
…generate lots of value.

Autonomous vehicles are big robots with…
…sensors,
…actuation, and
…lots of algorithms,
…and they can cause a lot of damage.

Introduction

© 2018 Apex.AI, Inc.

Can we make an autonomous
vehicle1 using ROS 2?

1) a large robotic system in a safety critical application.

Yes2

2) with caveats.

© 2018 Apex.AI, Inc.

© 2018 Apex.AI, Inc.

Power distribution
and battery

Network and
display

ROS running on x86 PC

Apex.OS and
Apex.Autonomy
running on Drive PX2

GPS for reference

2x Lidar for object
detection

and localization

Camera for object
detection and traffic
light state detection

Our Autonomous Driving Setup

© 2018 Apex.AI, Inc.

Nvidia DrivePX2

Apex.OS ~ ROS 2

Drivers

Ground Plane Segmentation

Fusion

Downsampling

Clustering

Hull Formation

VLP-16 VLP-16

/points_no_ground

Intel Nuvo

ROS 1

ros1_bridge

Tracking /filtered_points

/bounding_boxes

Waypoint Following

Localization &
AD Map

Prediction

Vehicle Drive by Wire
Interface

Decision Making

Traffic Light Detection

Our ROS 2 - ROS 1 Setup

© 2018 Apex.AI, Inc.

ROS 2 has all the core features
needed to build a large robot
• Node API, topics, services
• Parameter server
• Command line introspection
• Composition
• TF

In addition to extra features missing
from ROS 1
• Deterministic roslaunch
• Rclcpp_lifecycle
• DDS (best effort and reliable QoS)
• Data Security
• Layered architecture

Why we still need ROS 1
• Legacy Algorithms
• Rviz
• Rosbag
• Rqt_graph
• Rqt_plot
• Gazebo
• Console Logging  

(to file, rosout topic)

ros1_bridge

Recap: ROS 2 vs. ROS 1

© 2018 Apex.AI, Inc.

Limitations of ROS 2 for Autonomous Driving

ROS 2 is missing features needed for safety-critical applications
1. Hard Real-Time

• OS Primitives (memory, synchronization)
• Real Time Logging
• Waitsets
• Large Memory Support

2. Robustness and Security
• Managed System
• OS Security

3. Testing and Certification

Apex.OS is an automotive ROS 2 for safety-critical applications

© 2018 Apex.AI, Inc.

Automotive ROS 2: Hard Real Time

Deterministic resource usage and runtime is necessary for a safety critical system
• Memory
• Threads
• Blocking calls

ROS 2 is still too dynamic for hard real-time
1. Memory

• Allocation on subscription
• std::string
• std::vector
• std::exception

2. Blocking calls
• fprintf
• fwrite

3. Non-RT DDS Implementation

To bridge the gap to hard real-time
• No resource allocation during runtime
• All operations are finite and bounded
• All potentially blocking calls have timeouts

© 2018 Apex.AI, Inc.

Automotive ROS 2: Real Time Logging

Printing console is a nondeterministic  
blocking call

// Trace of RCLCPP_INFO call:
RCLCPP_INFO(logger, "foo"); 
RCUTILS_LOG_INFO_NAMED(logger.get_name(), "foo"); 
RCUTILS_LOG_COND_NAMED(...); 
// ... 
rcutils_log(...); 
(*output_handler) 
 (location, severity, name ? name : "", now, format, &args); 
output_handler = g_rcutils_logging_output_handler; 
g_rcutils_logging_output_handler = 
 rcutils_logging_console_output_handler(...); 
// Calls 
fprintf(...);

A purpose-built real-time logger was built
instead
• Logging call uses deterministic atomic

operations
• Writes to a self-healing, fail-resistent ring-

buffer in shared memory
• Buffer can be flushed with minimal

overhead

#define APEX_PRINT(...) \ 
 apex::console::print(\
 static_cast<uint32_t>(__LINE__), \
 __FILE__, \
 __VA_ARGS__)
APEX_PRINT("Debug float value", 32.23F);

14941| apex_console_logging | 2018-08-30 17:15:54.319515| Version: 0.0.0
14942| apex_console_logging | 2018-08-30 17:15:54.319520| Formal build: No
14943| apex_console_logging | 2018-08-30 17:15:54.319521| Debug float value: :+32.23
14944| apex_console_logging | 2018-08-30 17:15:55.319628| Debug integer value: :-32
14945| apex_console_logging | 2018-08-30 17:15:56.319741| This is a debug message

© 2018 Apex.AI, Inc.

Automotive ROS 2: Waitsets

Callbacks are the primary mechanism by
which ROS handles the receipt of
interprocess communication

const auto subscriber1_ptr =
 node_ptr->create_subscriber<std_msgs::msg::String>(
 "Topic1",
 bar); 
const auto subscriber2_ptr =
 node_ptr-
>create_subscriber<geometry_msgs::msg::PointStamped>(
 "Topic2",
 foo); 
 
// foo and bar get executed in an arbitrary order 
rclcpp::spin(node_ptr);

Waitsets better lend themselves to a deterministic
execution order and error handling

rclcpp::Node node("Node"); 
auto sub1 = 
 node.create_subscriber<std_msgs::msg::String>( 
 "Topic1"); 
auto sub2 = 
 node.create_subscriber<geometry_msgs::msg::PointStamped>( 
 "aTopic2"); 
rclcpp::Waitset<2> ws({sub1, sub}); 
 
// Wait for 5 seconds. 
ws.wait(5s); 
 
auto msgs1 = sub1->take(); 
if(msgs1) { 
 // always update to latest msgs2 if available
 // before acting on msg1  
 auto msgs2 = sub2->take(); 
 if(msgs2) { 
 handle_sample(msg2.data()); 
 } 
 handle_sample(msg1.data()); 
} else { 
 // react to not receiving msgs1 in time  
}

© 2018 Apex.AI, Inc.

Automotive ROS 2: Large Memory Support

The maximum size of a UDP packet is 64kB
• Messages larger than 64kB require

fragmentation
• Large messages are slower to transmit
• Exchanging pointers (8 B) to memory

locations in shared memory is
significantly faster for large data

/* SHM Publish */ 
// Initialize  
apex::shared_memory::ShmArray<BigMsg> shm_pub(num_frames,
topic.c_str()); 
const auto pub_ptr = node_ptr-
>create_publisher<std_msgs::msg::Uint64>(topic); 
 
// publish: write message to shared memory 
BigMsg big_msg; 
const uint64_t frame_num = 0U; 
shm_pub[frame_num] = big_msg; 
// publish: send frame number via DDS 
std_msgs::msg::Uint64 msg; 
msg.data = frame_num; 
pub_ptr->publish(msg); 
 
/* SHM Subscribe */ 
// Initialize  
const apex::shared_memory::ShmArray<BigMsg> shm_sub(num_frames,
topic.c_str()); 
 
auto cb = [&](const std_msgs::msg::Uint64::SharedPtr msg) { 
 // copy large message to local context
 // could also manipulate in shared memory for zero copy 
 local_big_msg = shm_sub[msg->data]; 
}; 
 
const auto sub_ptr = node_ptr-
>create_publisher<std_msgs::msg::Uint64>(topic, cb);

© 2018 Apex.AI, Inc.

Automotive ROS 2: Managed System

Deterministic startup order of nodes is
important for large systems
• ROS 2 launch (Python) provides this

capability
• ROS 2’s managed nodes allow

individual nodes to react to failures

ROS 2 lacks mechanisms for the whole system to
react to node failures
• Heartbeat (detect silent failures)
• Lifecycle Manager (coordinate system level

responses)
• Shadow nodes (instant failure response for critical

systems)
• Consensus

© 2018 Apex.AI, Inc.

Automotive ROS 2: Security

ROS 2 exposes three kinds of security
from DDS
• Message encryption
• Authentication
• Access Control
• Data Tagging
• Logging

This is insufficient to guard against corrupted
or malicious binaries
• Memory hoggers
• CPU stressors
• Tailor-made DDS participants

ROS 2 also lacks key mechanisms such as
• Secure over-the-air (OTA) updates
• Secure key storage
• Integration with existing security

infrastructure

© 2018 Apex.AI, Inc.

Automotive ROS 2: Testing and Certification

Follow a functional safety standard (ISO 26262):
1. Analyze your use case

• Write requirements
2. Follow a process

• Document everything
• Follow a coding standard
• Analyze your code
• Do code reviews

3. Write tests
• Unit, integration, full stack, stress, fault,

injection, requirements
• SIL, HIL (every supported ECU, sensor)
• Line, branch, MC/DC coverage

How do you prove code is safe?

Testing in the cloud…

…and in the lab.

© 2018 Apex.AI, Inc.

Giving Back

Tools Static Exceptions
Agile Development Environment
(Inter-Process Communication) Performance Test
ament_pclint
AutowareAuto

ROS 2 Features YAML Parameter Parser
Bugs osrf_testing_tools_cpp

orocos_kinematics_dynamics
rcutils

© 2018 Apex.AI, Inc.

https://github.com/ApexAI/static_exception
https://gitlab.com/ApexAI/ade-cli
https://github.com/ApexAI/performance_test
https://github.com/ament/ament_lint/tree/master/ament_pclint
https://gitlab.com/AutowareAuto/AutowareAuto
https://github.com/ros2/rcl/pull/235
https://github.com/osrf/osrf_testing_tools_cpp/pull/5
https://github.com/orocos/orocos_kinematics_dynamics/pull/112
https://github.com/ros2/rcutils/pull/87

Building Algorithms for Safety Critical Applications

As is: Changes:
Memory allocation per packet All memory allocation on startup
Nodelets as a proxy for threading Threading with controllable stack size, priority, etc.
OS-specific system calls OS-agnostic system calls
No failure handling Notifies user on UDP timeout
Coarse point cloud discretization Firing-level point cloud discretization
Non-RT logging RT logging
Integration tests Unit, integration, stress tests

Case Study: ROS 1 Velodyne Driver

© 2018 Apex.AI, Inc.

Conclusion

ROS 1 is great
• Lots of tools and algorithms
• Community
• But can never be automotive grade
ROS 2 is even greater
• Enough features for serious

development
• API is stable enough
• Can work with ROS 1
• Can be automotive grade

Apex.OS is automotive grade ROS 2
• Real-time
• Secure
• ISO 26262 certified

 is hiring!
We are actively recruiting developers and
engineers:
• Framework
• Embedded
• Security
• Certification
• Algorithms
If you are interested to learn more, talk to us
at ROSCon or apply at www.apex.ai

Ⓡ

© 2018 Apex.AI, Inc.

ROS 1 PubSub vs. Apex.OS PubSub

© 2018 Apex.AI, Inc.

