Continuing Work and Developments
By Ruffin White and Gianluca Caiazza

Design Qutline

e Harden ROSI API * ‘

o Validate API calls on client & server

o Crosscheck using certificate policy extensions

o Filter or redact response in accordance with policy
e Standardize Policy Profile Syntax

o AppArmor-like Policy Profile Syntax for users

o Intelligent permission models and alias

o Simplify ROS1/ROS2 access definitions P
e Integrate Policy Profile Autogeneration

o Formal SROS logging formating and verbosity

o Deliberate policy adjustments using SROS logs
o User interaction through sros-genprof CLI

ROST Graph

Distributed Computation Graph
Communication is peer-to-peer
Master “Resolver” for pub/sub

Parameter Server

Sl Nodes
| Params XMLRPC
-~ —-— s m - .
Master TOP 168
Services
-~ T~
R/ \ 2 y N
. * * [] * * . \
\¢ . }' Controller 1
I . . : . \ I
¢ . . * \ < /
A K4
/ \ =
4 omer Clear Text
\ | - P>
\ / Open Access
\ -_— / _____

ROST API

A collection of sub APIs
Each specific to a given role
Roles: Master vs Nodes

Namespace Specific:

Services

setParam
getParam
hasParam
deleteParam

getParamNames
searchParam

subscribeParam
unsubscribeParam

Parameter API:

Slave API:

getBusStats
getBusInfo
getMasterUri
shutdown

getPid
getSubscriptions
getPublications
paramUpdate
publisherUpdate
requestTopic

Master API:

registerService
unregisterService
registerSubscriber
unregisterSubscriber
registerPublisher
unregisterPublisher

lookupNode
getPublishedTopics
getTopicTypes
getSystemState
getUri
lookupService

What end of the API does a given role reside on?

Topics

Parameter API Slave API
Master | Server Client Server
Nodes | Client Server Client ,

SROS1 Graph

All Traffic is Encrypted:
via. TLS and PKI

API has Access Control:

via. policy extensions in X.509
o Client check that Server is authorised
to respond to the API call
o Server check that Client is authorised
to request the API call

Parameter Server
Nodes
XMLRPC
Topics
Services

E Params j

Master

Encrypted
4P

Access Controly

D

SROS] API Key Server API

Parameter API

Roles are enforced E — j Slave API
Requests v.s. Responses XMLRPC
(HTTPS)

Strict asymmetric API access Master

v Client
' v Server

SROS1 Access Control

Using Mandatory Access Control (MAC),
Global security policy is: deny by default

Explicit permission to resource is required,
where adequate scope must be satisfied

Conflicts in allowed and denied scopes are
resolved by denying the intersection overlap

Path globbing is used to formulate a scope,
Like wildcards or regular expression, regex

v Allowed

Resources: /

Allowed:
/chatter{,/**}

Denied:
/chatter/foo

Denied:
/*/e-stop{,/**}

SROST PKI

Using X.509 Certificates

Issued to each Node
Signed by a trusted CA
Embedded w/ Policy Exertions

(@)
(@)
(@)
(@)

Access Control defined over
m API Roles
e Server
e (lient
m Allow/Deny Resources
— e Parameters
e Services
e Topics

Subject name: /wheatley

Subject Alternative Name: /wheatley{,/*}
Issuer Name: Aperture Science CA
Validity period: Not Before->Not After
Subject Public Key: ...

X.509 V3 Extensions
Certificate Policies: critical
Policy: Master Slave APl Server OID
Policy: Publishable Topics OID
CPS: /chatter{,/**}

Policy: Denied Publishable Topics OID

CPS: /chatter/foo
CPS: /*/e-stop{,/**}

Policy: Executable Services OID
CPS: /wheatley/get loggers

CPS: /wheatley/set _logger level

Policy: Readable Parameters OID
CPS: /use _sim_time

Y

SROST API | Master

API server is access controlled

Request is cross checked

Request
Checked

E Params j

Response is filtered/redacted

Cert

Parameter Server Response

API flow Filtered Mas te r

SROST API | Master

Same is done for subscription:

TLS
. Request
Topics Checked
—
Cert E Topics j
‘ Response
Filtered Master

Ditto for: | Services

10

SROST API | Node

Nodes do the same for:

Topics

Node

Ditto for:

Services

N

A

Topic
Message

Subscriber
Checked

o]

Node/

SROST API | Node

Request Checks are done client side too,

Service

before any API is requested:

Server
Checked

Services

X

User
Space

=

Service
Response

Node A

Any API
Role

Ditto for: ' Master x

SROST API

Validation Terminology:

Legend Key

Description

Permission
Required

API called must respect
Permission type granted

Caller ID
Matched

Caller ID must must respect
Subject Alternative Name scope

Resource
Checked

Received arguments must respect
Allowed & Denied, resource scope

Response
Sanitized

Returning responses must respect
Allowed & Denied resource scope

Permission Description
Required
master Is a master or rosmaster node
slave Is a slave or regular node
read Read a scope of parameters
write Write to a scope of parameters
publish Publish to a scope of topics
subscribe Subscribe to a scope of topics
call Call or request a service
execute Execute or advertise a service

13

SROST | Parameter API

API access is contingent
upon the call’s intrinsics
and if permissible by scope

Can only mutate scope
that is writable, and see
what is readable

*[TODO]: Unsure about
union of two scopes? Doesn’t
work well with second point
above, but unsure of all uses.

Parameter API | Permission | Caller ID | Resource | Response
Required Matched | Checked | Sanitized

setParam write 4 4

deleteParam write v v

getParam read 4 4

hasParam read v v

getParamNames read U write* 4 v v

searchParam read U write* v v (4

subscribeParam read (4 (4

unsubscribeParam read (4 (4 E

SROST | Slave API

Validation is simple

As only the Master may
call the the Slave API

*slave-to-slave subscription

Slave API Permission | Caller ID | Resource | Response
Required Matched | Checked | Sanitized

getBusStats master

getBusInfo master

getMasterUri master

shutdown master

getPid master

getSubscriptions master

getPublications master

paramUpdate master

publisherUpdate master

*requestTopic master slave v v v b

SROST | Master API

API access is contingent
upon the call’s intrinsics
and if permissible by scope

Can only mutate scope
that is writable, and see
what is readable

*Extra care in scoping

**Extra care in sanitizing

Master API

registerService
unregisterService
registerSubscriber
unregisterSubscriber
registerPublisher
unregisterPublisher
lookupNode
getPublishedTopics
getTopicTypes
getSystemState
getUri

lookupService

Permission
Required

execute
execute
subscribe
subscribe
publish
publish
*pub U sub
subscribe
subscribe
slave
slave

call

Caller ID
Matched

R X X X X = N ~ N 8

Resource
Checked

R X X X X N N 8 ~ N 8«

Response
Sanitized

**“

16

SROST | Topics & Services

Transport connections
checks opposite peer of
the connection is
permitted to proceed.

*[TODO]: Transports
are not quite the same

format as the rest of the
API validation.

TOPiC Transport Permission | Caller ID | Resource | Response
Required | Matched | Checked | Sanitized

connect_topic publish v v

accept_topic subscribe v v

Service Transport Permission | Caller ID | Resource | Response
Required | Matched | Checked | Sanitized

connect_service execute 4 4

accept_service call v v

07

SROST API

In summary:

Server and Clients check peer’s roles when
requesting and responding to API calls.

API Calls are scrutinized via permissions &
scopes, with responses sanitized as needed.

Topic and Service transport is scrutinized on
Server and Clients side as well, with scope
permissions considered in the connection.

Mwaha
hahaha!

18

SROS Policy Profile Syntax

Similar to that of Apparmor
o Supports MAC
m Permissions are explicit
o Path Globbing
m To define scopes
o Importing
m #include rules for reuse
o Parsable format
m Help autogenerate profiles
o Human readable
m Auditing & debugging clarity

An Example Apparmor Policy Profile:

#include <tunables/global>
#include <tunables/ros>

/opt/ros/kinetic/bin/rosmaster {
#include <ros/base>
#include <ros/node>
#include <ros/python>

@{ROS_INSTALL_BIN}/rosmaster rix,
}

/opt/ros/kinetic/share/rospy_tutorials/e01_talker_listener/listener.py {

#include <ros/base>
#include <ros/node>
#include <ros/python>

@{ROS_INSTALL_SHARE}/rospy_tutorials/001_talker_listener/listener.py r,

}

/opt/ros/kinetic/share/rospy_tutorials/e01_talker_listener/talker.py {

#include <ros/base>
#include <ros/node>
#include <ros/python>

@{ROS_INSTALL_SHARE}/rospy_tutorials/001 talker_listener/talker.py r»19

}

/namespace

SROS Policy Profile Syntax |?

#include role Profile
Profiles are applied \ resource /scope masks
to node Namespaces
Namespace matched nodes
incur those Profiles
talker
Profiles are composed of é

resource access Ru]es .
##tinclude node

Rules specify resource type, topic /chatter p,

scope, role, and permissions }

the policy allows or denies

20

SROS Policy Profile Syntax

Resource types make a rule
explicit to a specific resource

Scope defines the globbing

namespace for the permission

Permissions are specified via masks,
masks are also resource explicit

Deny is used to revoke permissions,
superseding any applicable allow

Resource Mask Permission
r Read
Parameters
w Write
s Subscribe
Topics
P Publish
An Example
. . c Call
SROS Policy Profile: | o, ices
X Execute
API Role
/wheatley
{ master
#include <ros/slave>
slave

param /use_sim_time r,
topic /chatter{,/**} p,
deny topic /chatter/foo p,
deny topic /*/e-stop{,/**} p,
service /wheatley/get_loggers x,

service /wheatley/set_logger level

21

SROS Logging

Similar to that of Apparmor

(@)

(@)

(@)

(@)

Security Events

m Access attempts logged
Logging Levels
m Changing verbosity

Parsable format

Help autogenerate profiles

Human readable

Auditing & debugging clarity

An Example Apparmor Log:

(roslaunch failing to signal interrupt nodes)

Jan 25 12:31:27 dox kernel: [108436.948583] audit:

type=1400 audit(1485376287.948:83):
o | Context

apparmor="DENIED"

operation="signal" profile="ros/talker_listener_py"
pid=32701 comm="roslaunch" requested_mask="receive"
denied_mask="receive" signal=int peer="ros/roslaunch”

operation="signal" profile="ros/talker_listener_py"
pid=32702 comm="roslaunch" requested_mask="receive"
denied_mask="receive" signal=int peer="ros/roslaunch”

operation="signal" profile="ros/rosout"”
pid=32627 comm="roslaunch" requested_mask="receive"
denied_mask="receive" signal=int peer="ros/roslaunch”

operation="signal" profile="ros/rosmaster"
pid=32627 comm="roslaunch" requested_mask="receive"
denied_mask="receive" signal=int peer="ros/roslaunch”

| Info~

SROS Logging

e Same logging format as ROS

Context Info

(\

[node][verbosity] datetime : logging string

o Node
m Logging node of origin
o Verbosity
m Access control severity
o Datetime (o)
[| yyyy-MM-dd HH:mm:ss,fff
o String
m Log message info
An Example ROS Log:
[rosmaster.main] [INFO] 2017-01-25 18:47:43,225: initialization complete, waiting for shutdown
[rosmaster.main] [INFO] 2017-01-25 18:47:43,225: Starting ROS Master Node
[xmlrpc] [INFO] 2017-01-25 18:47:43,226: XML-RPC server binding to ©0.0.0.0:11311
[xmlrpc] [INFO] 2017-01-25 18:47:43,226: Started XML-RPC server [http://GLaD0S:11311/]
[xmlrpc] [INFO] 2017-01-25 18:47:43,227: xml rpc node: starting XML-RPC server
[rosmaster.master][INFO] 2017-01-25 18:47:43,227: Master initialized: port[11311], uri[http://GLaD0S:11311/] 23
[rosmaster.master][INFO] 2017-01-25 18:47:43,285: +PARAM [/run_id] by /roslaunch

An Example SROS Log:

SROS I_O gg| ng (wheatley failing to register as publisher)

[rosmaster.master][INFO] 2017-12-31 12:34:56,789: sros="STATUS"
For profﬂing, debugging operation="runtime_mode" mode="audit"

policies and autogeneration

Compatible format for
working with existing tools
*[TODO]: message syntax

Verbosity Message
Level Purpose
INFO Mode Status | [rosmaster.master][WARN] 2017-12-31 12:38:57,789: sros="COMPLAIN"
operation="getParam" node="/wheatley" resource="parameter"
WARN "COMPLAIN" [rosmaster.master][ERR] 2017-12-31 12:34:57,839: sros="DENIED"
operation="registerPublisher" node="/wheatley" resource="topic"
ERR IIDENI EDII path="/Chatter‘/'FOO" 24

Profile Autogeneration

Similar to that of Apparmor

O

Log Auditing

m Runtime generates events
Demonstration Learning

m Events are extracted from logs
Command Line Interface

m Help profile events & policies
Debugging readable

m CLI suggests policy modifications

Example Apparmor CLI:
(debugging roslaunch with aa-logprof)

$ sudo aa-logprof

Reading log entries from /var/log/syslog.
Updating AppArmor profiles in /etc/apparmor.d.
Complain-mode changes:

Profile: ros/rosmaster
Access mode: receive
Signal: int

Peer: ros/roslaunch

[1 - signal receive set=int peer=ros/roslaunch,]
(A)llow / [(D)eny] / (I)gnore / Audi(t) / Abo(r)t / (F)inish
Adding signal receive set=int peer=ros/roslaunch, to profile.

= Changed Local Profiles =
The following local profiles were changed. Would you like to save them?

[1 - ros/rosout]
2 - ros/talker_listener_py
3 - ros/rosmaster
(S)ave Changes / Save Selec(t)ed Profile
[(V)iew Changes] View Changes b/w / (C)lean profiles / Abo(r)t
Writing updated profile for ros/rosmaster.
Writing updated profile for ros/rosout. 25
Writing updated profile for ros/talker_listener_py.

Profile Autogeneration

Workflow:
1. An empty profile is loaded
2. Profile is set to complain mode
3. ROS app is put through its paces
4. SROS violations are logged
5. Users then runs logprof
6. Tools suggests policy amendments
7. Users audits using a CLI dialogue
8. New policy saved, old config cleaned
9. Repeat steps 3-8 until satisfied

]
i

Finaly profile is set to enforce mode

Proposed SROS CLI:
(debugging a ROS node with logprof)

$ sros-logprof

Reading log entries from /home/user/.ros/log/
Updating SROS profiles in /home/user/.ros/sros.d.
Complain-mode changes:

Profile: ros/wheatley
Access mode: publish
Topic: /chatter/foo

[1 - topic /chatter/foo p,]
(A)llow / [(D)eny] / (I)gnore / Audi(t) / Abo(r)t / (F)inish
Adding topic /chatter/foo p, to profile.

= Changed Local Profiles =
The following local profiles were changed. Would you like to save them?

[1 - ros/wheatley]
2 - ros/listener
3 - ros/rosmaster
(S)ave Changes / Save Selec(t)ed Profile
[(V)iew Changes] View Changes b/w / (C)lean profiles / Abo(r)t
Writing updated profile for ros/listener.
Writing updated profile for ros/rosmaster. 2%
Writing updated profile for ros/wheatley.

SR0OS2 Autogeneration

Internal ROS2 plugin for Secure DDS:

1. Initialize Certificate Authorities
2. Build, sign, distribute Governance
3. Create, sign node PKI & Permissions

keystore.cnf ~)
CAs:
Identity CA: Subject name:

Permissions CA

. Issuer Name:
Aperture Science

Issuer:
Aperture Sci
Hash: SHA256
Type: RSA
Size: 4096
Valid: ~52k AD

X.509
¢

governance.cnf
Domains: ...
Protection: encrypt

v

governance.xml
<dds xmlns:xsi=...
<access_rules>
<domain_rule>

permissions.xml
<dds xmlns:xsi=...
<permissions>
<grant_name=...

P = = = e = = =

(=)

Q) Il Q

Subject name: Subject name:
Identity CA | wheatley

Issuer Name: ' Issuer Name:
Aperture Science Identity CA
. | o

I
X.509 X.509
(!; J \(;g

governance.p7s
<dds xmlns:xsi=...
<access_rules>
<domain_rule>
<domains>

Signafum

permissions.p7s

<dds xmlns:xsi=...

<permissions>
<grant_name=...
<subject_name>

Signaeum

permissions.cnf

/namespace/*/wheatley
{
#include <ros/slave>
param /use_sim_time r,
topic /chatter{,/**} p,
deny topic /chatter/foo p,
deny topic /*/e-stop{,/**} p,
service /wheatley/get_loggers x,
service /wheatley/set_logger_level x,

$ ros2 secure keystore auto
/namespace/here/wheatley

$ tree keystore_root/
keystore_root/
— governance.cnf
— keystore.cnf
—— permissions.cnf
—— participants
L namespace
L here
L wheatley
I— cert.pem
— key.pem
permissions.p7s
permissions.xml
— private
— identity.key.pem
— governance.xml
permissions.key.pem
— public
— identity.cert.pem
permissions.cert.pem
L— shared 27
L governance.p7s

R:0.B.0.T. Comics

Conclusion

Presented design affirms SROS’s objective
to secure transport and application layers

Remain agnostic to transport or release
to benefit all platforms from shared tooling

Promote high level interfaces and plugins

to simplify use, thus encouraging adoption

Having EATR programmed by strict
vegans to appease the public has
unintended consequences.

SROS Responsibly & 28

http://www.willowgarage.com/sites/default/files/blog/200910/eatr_03.600h.png
http://jorgecham.com/

CONTEXTUAL ROBOTICS INSTITUTE
ucC San Dlego

“..to support the development dlstr|but|on and

CO gmtwe RObOthS— adoptlon of open source software for use in I’ObO’[,I,CS
research, education, and product development.
|

Foscarl

“...to advance contextual robotics through relevant grand e Z | a
challenge research, to educate and train students who are
prepared to catalyze future developments in robotics; and Advances in Autonomous,

to provide the talent and innovation to establish

Distri nd Pervasiv m
San Diego as a leading robotics hub.” stributed and Pervasive systems

http://osrfoundation.org
http://jacobsschool.ucsd.edu/contextualrobotics/
http://jacobsschool.ucsd.edu/contextualrobotics/
http://cogrob.org/
http://cogrob.org/

Resources More about:

Ruffin: about.me/ruffin

SROS1 Documentation:
o wikiros.org/SROS
SROS2 Tickets:

o Access Control Policy Format
m github.com/ros2/design/issues/140

Gianluca: about.me/caiazza

o Keystore Proposal
m github.com/ros2/sros2/issues/21

o Security Event Logging
m github.com/ros2/design/issues/150

SROS Publications:

White, R., Caiazza, G., Christensen, H., Cortesi, A., (2017)
SROS1: Securing ROS over the wire, in the graph, and
through the kernel. Manuscript submitted for publication.

http://wiki.ros.org/SROS
https://github.com/ros2/design/issues/140
https://github.com/ros2/sros2/issues/21
https://github.com/ros2/design/issues/150
https://about.me/ruffin
https://about.me/caiazza

