
The ROS 2 Vision

For Advancing the Future
of Robotics Development

Sep. 21st 2017
Dirk Thomas, Mikael Arguedas

ROSCon 2017, Vancouver, Canada

"Unboxing"

Icons made by from is licensed by Freepik www.flaticon.com CC 3.0 BY

http://www.freepik.com/
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/

Getting Started

command data

video data

Moving Outdoor

command data

video data

Quality of Service
Computer

joystick
node

image view
node

Robot

flight cntrl
node

camera
node

/image

/cmd_vel
reliable

best effort

Extend Capabilities: Hardware

Computer

image view
node

Robot

camera
node

camera
node #2

/image

/image2image view
node #2

Rename topic
at runtime

Extend Capabilities: So�ware

Robot

flight cntrl
node

/cmd_vel

le� camera
node

/image_le�

right camera
node

/image_right

stereo image
pipeline node

/obstacles

Recap #1
 Multi-OS support: Linux, Mac OS, Windows

 Binary packages for Mac OS and Windows

 Different client libraries share common implementation

 Quality of Service: variety of configuration options
 DDS provides even more configuration options,

 Hardware with "native" communication interface

 (no need for separate protocols and driver packages)

 Event based notifications (rather than need for polling)
 Remapping of topics at runtime

directly accessible

http://design.ros2.org/articles/ros_middleware_interface.html#optionally-exposing-native-handles

Undeterministic Startup

nodes ready

node not ready

Robot

flight cntrl
node

/cmd_vel

le� camera
node

/image_le�

right camera
node

/image_right

stereo image
pipeline node

/obstacles
no obstacles reported

Lifecycle State Machine

unconfigured inactive

active

finalized

Deterministic Startup

all active

Robot

flight cntrl
node

/cmd_vel

le� camera
node

/image_le�

right camera
node

/image_right

stereo image
pipeline node

/obstacles

Ready to fly

Coexistance with ROS 1

running ROS 1

/cmd_vel
reliable

/image
best effort

Usage Patterns of the "ros1_bridge"
Beta

Robot using ROS 2 onboard
Computer uses ROS 1 tools,
leverage existing ROS 1 packages

Beta
 (see talk)

Robot using ROS 1 onboard
Computer uses ROS 2 tools,
leverage intrinsic advantages
of the communication protocol

TurtleBot 2 demo

HSR demo

https://github.com/ros2/turtlebot2_demo
https://github.com/ruffsl/hsr_demo

Usage of the "ros1_bridge"

/cmd_vel
reliable

/image
best effort

ROS 1 Robot

flight cntrl
node

processing
node

camera
node

ros1_bridge
node

Usage Patterns of the "ros1_bridge"
Beta

Robot using ROS 2 onboard
Computer uses ROS 1 tools,
leverage existing ROS 1 packages

Beta
 (see talk)

Robot using ROS 1 onboard
Computer uses ROS 2 tools,
leverage intrinsic advantages
of the communication protocol

Incrementally migrate a ROS system

TurtleBot 2 demo

HSR demo

Robot

ROS 1 node

ROS 1 node

ROS 2 node

bridge

https://github.com/ros2/turtlebot2_demo
https://github.com/ruffsl/hsr_demo

Multi Robot
Distributed discovery useful for on-demand robot-to-robot comm.

All current ROS middleware implementations support it
As long as all robots use the same comm. protocol
they can communicate (independent of the vendor)

Quality of Service settings to tailor the comm. for the specific scenario

(see eProsima's talk @ 11:35)

Dynamic remapping of topics enables various different approaches, e.g.:

Flip namespaced robot spec. topics to be "global"
/robotA/pose → /pose

Subscribe to a specific topic from a group of robots
/**/pose or /floor2/*/pose

Adding a Custom Sensor

Robot

receiver
node

GPS receiver
node

Pose estim.
node

/found_beacon

Home

Beacon

MCU module

Same ROS 2 code!

Flight Controller Internals

/found_beacon

Flight controller node

Subscription thread Realtime thread Publication thread

/return_home

Recap #2
 Lifecycle nodes
 Basic Python-based launch files

 Launch utilizing lifecycle state machine

 Dual-home bridge to exchange msgs / srvs between ROS 1 and ROS 2
 More configuration options

Multi robot benefiting from the communication protocol:

 distributed discovery, configurable QoS, dynamic remapping

"Native" communication protocol with micro controllers ()

 Proof of concept for real time support using custom allocators
 No usage of real time kernel yet, no continuous testing

DDS-XRCE

http://www.omg.org/news/releases/pr2016/04-04-16.htm

Process Layout Decision

Robot

flight cntrl
node

/cmd_vel

le� camera
node

/image_le�

right camera
node

/image_right

stereo image
pipeline node

/obstacles

Single Process

Save configuration
as launch file

Fault Tolerance and Fallback Behaviors

right camera
node

mono. obst.
detect node/image

Fallback behavior #2:
switch to monocular det.

Unsecure System

command data

video data

Command spoofed

Securing the System

command data

video data

Encrypt sensitive data

Authentication

Validation and Certification
Use certified hardware components (which talks DDS)
Use certified DDS implementation
Use certified / validated so�ware components

Select only the subsystems of ROS 2 which are required for the use case
Build your own subsystem on top

→ Reduced effort to validate the custom application by

Using certified subsystem
Reducing footprint as much as possible

Recap #3
 Choose process layout at deploy time

 Support from launch to easily configure this

 Event based system providing the infrastructure for fault detection,
 no tooling yet

 Security following the standard
 Fine grain configuration

 None of the ROS 2 development is certified

 But it can interoperate with certified implementations

DDS-Security

http://www.omg.org/spec/DDS-SECURITY/

Questions...

For more information go to:
ros2.org

http://www.ros2.org/

