Model-based Design for Safety Critical Controller Design with ROS and Gazebo
Michael Naderhirn, Mischa Köpf, Josef Mendler
• Conformity means that a development was done according to safety critical standard
 • ISO 26262 – Automotive
 • DO-178C, DO-330-333 – Aeronautic
 • IEC62061 – Machinery
 • If “something bad” happens companies must show that the development was done conforming to the relevant safety critical standard
 • An independent auditing company helps a company through auditing that the development processes conform e. g. DO-178C

• Certification means that an authority certifies that a development is allowed to be used
 • UAV is allowed to fly into the civil aerospace (e. g. flies according the rules of the air)
 • Autonomous car is allowed to drive on the road (e. g. drives according the rules)
 • Conformity can be part of the certification

• Qualification means that a tool is qualified to be used for safety critical development
 • Documentation that a code generator generates correct code – e. g. tests show that the generated code produces the right and wrong results correctly
 • An independent auditing company audits the software used by company, the methods to test the software and the documentation
Product Development Cycle

Technology-phase
- Feasibility
- Technology selection
- Proof-of-Concept

Predevelopment-phase
- Concept
- System design
- Prototype

Serial-phase
- Cost sharing (20-30%)
- Manual development
- Often not used

- OpenModelica

Know How after predevelopment-phase

- ROS
Basic Design Steps

- Defining the system spec
- Hazard and risk analysis
- Determine Safety Integrity Level (SIL)
- Define controller structure and necessary redundancies

- Develop tests for the system, subsystem and modules
- Develop and test modules
- Integrate modules with subsystems and test
- Integrate subsystem with system and test
- Validate system with customer
How to get better?

• New mathematical methods to automate development process
 • On- and Offline system verification
 • Verified deep neural networks

• Listen to customer (some important findings)
 • Development in 90% preferably done on Windows computers
 • ROS is used in app. 80-90% of prototyping of robotic solutions
 • SMEs have problems to afford commercial development tools – some stop robotic projects after prototyping
 • Robotics engineer needs to be a software architect
 • Available knowhow and packages should be reusable
 -> High degree of automation required
Incremental (Agile) Development

Customers wish (Specifications)

System architecture and function interfaces

Detailed Design

Implementation

External Production

Validation

Verification

Integration Testing

Automated generated tests

HW/SW Integration

Getting it running

Modul Testing

Customer validation

Know How after predevelopment-phase

Agile development of mechatronic systems allows faster time2market
Our Solution - Kontrol

- Integrates
 - ROS / ROS2
 - Gazebo
- Imports ROS packages and prototypes automatically
- Model based design of ROS structure
- Software distribution to hardware and automatic configuration
- Manual coding or model based design
- Allows to add and edit Gazebo world
- Scilab connects to ROS network automatically from Windows
- Generates Code for ROS (and ROS2)
- Independent from simulation environment
- Future – Implements an incremental development process for safety critical controller design for mechatronic systems
Our Solution - Kontrol
Import of ROS Packages
Model-based Design of Controller Structure
Software Distribution and Automatic Configuration
Manual Coding and Model-based design
Add and Edit Gazebo World
What we want? / What we are looking for?

- We are looking for Beta Testers
 - Register at kontrol.tech – Beta testing
 - Will start in Q4/2017
Contact

Kontrol GmbH
Dr. Michael Naderhirn
Marienhöhe 25
4391 Waldhausen
Austria
Email: m.naderhirn@kontrol.tech
+43-676-9760483

Kontrol GmbH
Dr. Josef Mendler
Marienhöhe 25
4391 Waldhausen
Austria
Email: j.mendler@kontrol.tech
+49-175-5738846