
{,S}ROS
Securing ROS over the wire, in the graph, 

and through the kernel

By Ruffin White and Morgan Quigley



What is SROS?
● Encryption

○ Native TLS support for all socket level communication

○ X.509 PKI certificates for chains of trust, authenticity and integrity

○ Keyserver for key pair generation and certificate customisation 

● Access Control

○ Definable namespace globbing for node restrictions and roles

○ Audit graph network through security logs and events

○ User constructed and/or auto trained access control policies

● Process Profiles

○ Harden node processes on using Linux Security Modules in kernel

○ Quarantine a node’s file, device, signal, and networking access

○ Reusable AppArmor profile library for ROS

“An addition to the ROS API and ecosystem to 

support modern cryptography and security measures”

2



● Relevant robotic sectors:

○ Industrial Automation

○ Autonomous Vehicles

○ Home Automation

○ Internet of Things, etc.

Why SROS?

● ROS’s clear text transport

○ Packet Sniffing: Confidentiality

○ Man-in-the-middle: Integrity

● ROS’s anonymous graphs

○ Message Spoofing: Identification

○ Rouge Nodes: Authorization

● ROS’s runtime process

○ Code injection: Compromised Execution 

○ Zero Day Exploits: Altered Permissions

“Robots provide a vector for cyber threats 

to manifest into real-world risks.”

3



Why not use VPNs or SDNs?
● Pros:

○ Tunneling over distant networks

■ ROS allocates ports over runtime; ephemeral port firewall = whack-a-mole

○ Professional routers and switches 

■ Cryptographic overhead can be offloaded to dedicated hardware

○ Existing Infrastructure

■ A mature technology; well documented and understood

● Cons:

○ Session Hijacking

■ ROS is still exposed to attacks from within the local network

○ Stack Complexity

■ Additional system layers to configure and regulation

○ Fine Grain Control

■ Difficult to integrate and segregate subdomains of ROS graph 

4



{,S}ROS



● X.509 Public Key Infrastructure (PKI)

○ DSA, RSA, Elliptic Curve Keysigning

○ Leverage chains of trust to verify validity and authenticity

●
● Transport Layer Security (TLS) 

○ Wrap XMLRPC and TCPROS communication

○ Leverage socket encryption to verify integrity and privacy

●
● Keyserver and Keystores 

○ API to auto generate and distribute ciphered key pairs 

○ Customize X.509 certificate extensions and attributes

Encryption

6



Access Control
● Defining Namespaces Permissions

○ Permit/exclude graph permissions via ROS namespaces

○ Similar Apparmor globbing syntax using wildcards

●
● Auditing and Security Logs

○ Granular logging of access events and violation attempts

○ Audit/deny ROS API usage with rule modifiers

●
● Building Policies

○ Auto-generate/train policies from demonstration or logs

○ Human readable yaml, leverage variables & node anchors

7



Encryption & Access Control Demo

https://asciinema.org/a/88519

8

https://asciinema.org/a/88519
https://asciinema.org/a/88519
https://asciinema.org/a/88519


Process Profiles
● Linux Security Modules

○ Leverage pre-existing kernel level security features

○ AppArmor: easy to use and well documented

●
● Quarantine ROS Process

○ Limit node’s file, device, signal and networking permissions

○ Preemptively defend against zero day exploits

●
● ROS Profile Library 

○ Quickly build custom profiles using ROS module primitives

○ Includes minimal permissions necessary for core ROS features

9



Process Profiles Demo

https://asciinema.org/a/88531

10

https://asciinema.org/a/88531
https://asciinema.org/a/88531
https://asciinema.org/a/88531


TODO:
● SROS related REPs

○ PKI practices, regester OIDs, extensions

● More client libraries and transports

○ roscpp, rosjava; UDPROS, etc

● Harden all Master & Slave API calls

○ Check caller privilege/identity of before response

● Tests and code coverage

○ Unit Test all the things!

● Abstract security modules as plugins

○ Allow user to define custom policy evaluation plugins

11



A tip of the hat to OSRF & CogRob

“...to support the development, distribution, 
and adoption of open source software for 
use in robotics research, education, and 
product development.”

“...to advance contextual robotics through relevant grand 
challenge research, to educate and train students who are 
prepared to catalyze future developments in robotics; and 
to provide the talent and innovation to establish San 
Diego as a leading robotics hub.”

12

http://osrfoundation.org
http://jacobsschool.ucsd.edu/contextualrobotics/
http://jacobsschool.ucsd.edu/contextualrobotics/
http://cogrob.org/
http://cogrob.org/


Questions for Section {,S}ROS?

Resources
● SROS Documentation: 

○ wiki.ros.org/SROS 

● SROS Docker Image: 

○ hub.docker.com/r/osrf/sros

● More about me:

○ about.me/ruffin

13

http://wiki.ros.org/SROS
http://wiki.ros.org/SROS
https://hub.docker.com/r/osrf/sros/
https://hub.docker.com/r/osrf/sros/
https://about.me/ruffin
https://about.me/ruffin

