
R O S B U N D L I N G
M I K E P U R V I S

T H E H I STO R Y
ros-install-osx, the evolution of development and deployment at Clearpath

T H E P R O B L E M
stable releases for industrial customers in a rolling release world

T H E B U N D L E
the tools which power our solution, and some unanticipated benefits

T H E F U T U R E
how the tooling can further evolve to better to support this deployment model

H I STO R Y

Building ROS Indigo on Mac OS X, two years ago.

Actual installation instructions.

Stuff that might go wrong.

The number of potential problems dwarfs the main body of the setup
instructions.

https://github.com/mikepurvis/ros-install-osx

“This repo aims to maintain a usable, scripted, up-to-date installation procedure for ROS.
The intent is that the install script may be executed on a bare Yosemite or El Capitan
machine and produce a working desktop_full installation, including RQT, rviz, and Gazebo.”

Initial Gist  
Mar 2014

July 2015  
Github Repo

June 2016  
Brewed Python rosdeps

July 2016  
OS X Travis Tests

New approach used brewed python/numpy/scipy instead of the system
versions of those packages, and built in parallel with catkin_tools, rather than
catkin_make_isolated. Started life as a gist, eventually evolved into runnable
script. Positive side effect has been a centralized bug-tracker and place to
review and collaborate on fixes with a growing community of ROS Mac users.

rosinstall_generator desktop_full --rosdistro indigo  
 --deps --tar > desktop_full.rosinstall

wstool init -j8 src desktop_full.rosinstall

rosdep install --from-paths src --ignore-src --rosdistro indigo  
 --as-root pip:no -y

catkin config —-install

catkin build

source install/setup.sh

Process is:
1. Generate a list of all packages which will be in the workspace.
2. Download the tarball for each package.
3. Install system dependencies using rosdep (stuff like CMake, Boost, PCL).
4. Giant parallel build!

This is what the build looks like in catkin_tools. We’re not going to dwell here
except to say that a catkin_tools is equivalent in approach to
catkin_make_isolated, meaning that each package is configured as its own
project, rather than being combined together. This is critical because plain
CMake packages like orocos_kdl and catkin itself can’t be combined into one
workspace the way catkin packages can.

- tar:

 local-name: actionlib

 uri: https://github.com/ros-gbp/actionlib-release/archive/release/indigo/actionlib/1.11.6-0.tar.gz

 version: actionlib-release-release-indigo-actionlib-1.11.6-0

- tar:

 local-name: angles

 uri: https://github.com/ros-gbp/geometry_angles_utils-release/archive/release/indigo/angles/1.9.10-0.tar.gz

 version: geometry_angles_utils-release-release-indigo-angles-1.9.10-0

- tar:

 local-name: bond_core/bond

 uri: https://github.com/ros-gbp/bond_core-release/archive/release/indigo/bond/1.7.17-0.tar.gz

 version: bond_core-release-release-indigo-bond-1.7.17-0

...

desktop_full.rosinstall This is a snippet of what’s inside the rosinstall file that wstool consumes. It’s a
list of tarball links which will be downloaded and unpacked to populate the
source workspace.

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

 bond_core:

 release:

 packages:

 - bond

 - bond_core

 - bondcpp

 - bondpy

 - smclib

 tags:

ros/rosdistro/indigo/distribution.yaml The rosinstall_generator tools uses as its source data the distribution.yaml
which governs which version of every package is the current latest in a given
distribution. So in this case, version 1.11.6-0 was the last bloomed release of
actionlib into ROS Indigo. The build farm uses this data to generate Jenkins
jobs to build debian packages, but rosinstall_generator uses it to generate
source workspaces.

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

 bond_core:

 release:

 packages:

 - bond

 - bond_core

 - bondcpp

 - bondpy

 - smclib

 tags:

https://github.com/ros-gbp/actionlib-release/

archive/release/indigo/actionlib/1.11.6-0.tar.gz

ros/rosdistro/indigo/distribution.yaml The generator is capable of generating a list of git URLs, but downloading
tarballs is much faster than cloning git repos, so there is logic to recognize
known git hosts and supply tarball URLs with the --tar flag.

rosinstall_generator desktop_full --rosdistro indigo --deps --tar

This used to support github only, but we patched it to also recognize bitbucket
and gitlab. Now the other missing piece here is the --deps flag. How does
rosinstall_generator know which packages to pull in when you call for
dependencies?

http://repositories.ros.org/rosdistro_cache/<distro>-cache.yaml.gz Every few minutes the buildfarm examines the distribution.yaml and updates a
secondary yaml which is the contents of the distribution plus an additional
dictionary which contains the complete package.xml string for every package.
By accessing this cache, rosinstall_generator is able to quickly determine
recursive dependencies.

So. That’s ros-install-osx. The second piece of history is that Clearpath has
executed a pivot in the past two years, transitioning from a research products
company to focusing primarily on a full-stack solution for autonomous mobile
robots in the industrial logistics space. This has meant a bunch of changes in
how we deploy which are what have primarily driven the development of our
bundle pipeline.

T H E P R O B L E M S

About a year ago, I officially joined the industrial team, as Firmware and
Integration manager. Deployments to robots, developers, simulation
environments were all based on bloomed deb packages as generated by
buildbot-ros and then later ros_buildfarm. We had the following issues with this
approach.

1

Rolling release. Robots and devs would all be running
"testing debs" without any clear anchor on what versions
of packages they actually had.

We had scripts which would use rospack list or rosversion to at least report the
versions on a machine at a given time (for example, when a problem was
observed, or a crash occurred), but knowing is only half the battle—it doesn’t
help you reproduce a bad state when trying to debug it later.

2

Coupled Repos. Having many interdependent packages
in different repos meant having to bloom changes all the
time to keep unit tests from breaking, rather than
because there was a logical, releasable change.

Because ros_buildfarm sets up the test environment by installing the latest
released version of all test dependencies.

The easy argument here is “don’t have so many repos,” but this is not so simple,
particularly when you consider our relationship to upstream. Take our controls
code, which is spread across three repos: navigation, the planner, and the
tracker, where navigation is a fork of upstream, and the planner and the tracker
are proprietary. At this point our navigation fork is permanent and permanently
private, but a year ago there was still a vague ambition to try to merge our

3

The release process was a debmirror snapshot of the
testing repo, similar to how upstream periodically
syncs packages to public.

Meaning that there was no sane way to put incremental bugfixes on a build
— you were either on the bleeding edge or a stale snapshot. We experimented
with injecting one-off bug fix debs into a release, but it was a very manual, error-
prone process.

4

Meaningless package releases. For scale reasons, we strongly
preferred to run the test fleet on binaries, so to get code into
testing, developers would bloom broken stuff all the time.

Part of how I justify getting sucked into this project despite being the “firmware”
manager is that we increasingly view the entire robot as an embedded target to
be flashed, rather than a Linux PC on wheels with an ordinary computer
lifecycle.

T H E B U N D L E

“Lets centrally build a workspace of a bunch of our stuff,
tar up the installspace, and use that on the robots.”

This was the proposal that my colleagues and I discussed as a starting point.

“Lets centrally build a workspace of a bunch of our stuff,
tar up the installspace, and use that on the robots.”

all our stuff

Based on ros-install-osx— just build everything! Why bother separating out an
overlay?

“Lets centrally build a workspace of a bunch of our stuff,
tar up the installspace, and use that on the robots.”

all our stuff

make a deb package of

We need versioning and a distribution scheme; let’s just use a debs and an apt
repo; those are already a thing.

“Lets centrally build a workspace of a bunch of our stuff,
tar up the installspace, and use that on the robots.”

all our stuff

make a deb package of

everywhere!

So your first question might be “seriously, a deb package, in this age of sexy
things like containers?”

virtualenv create foo  
foo/bin/pip install -r requirements.txt  

debootstrap trusty foo  
chroot foo  

docker build -t foo .  
docker run -t -i foo /bin/bash  

vagrant box add ubuntu/trusty64  
vagrant up  
vagrant ssh

M
O

R
E

 ISO
LA

TIO
N

And it’s true, isolation is a big thing right now. Type and degree of isolation
varies.

virtualenv create foo  
foo/bin/pip install -r requirements.txt  

debootstrap trusty foo  
chroot foo  

docker build -t foo .  
docker run -t -i foo /bin/bash  

vagrant box add ubuntu/trusty64  
vagrant up  
vagrant ssh

C AT K I N
Base catkin is isolated in terms of filesystem only. Sort of a virtualenv for C++
CMake projects. We’re not doing multiple apps, and port or CPU isolation would
just get in our way, so we don’t need a docker container— we can ship this thing
as a deb, and then there’s a lot of additional tools we can take advantage of in
the debian ecosystem which don’t exist for docker (and we don’t have to run the
daemon).

Parallel XZ Compression

https://launchpad.net/~mikepurvis/+archive/ubuntu/dpkg

When using dpkg-deb to compress a 2.2GB payload, this version of dpkg-deb takes, on a 12-core machine:

• 30 seconds to compress to 555MB (-z1)

• 42 seconds to compress to 521MB (-z3)

• 119 seconds to compress to 478MB (-z6)  

Running the same test with dpkg 1.17.5 (trusty default):

• 319 seconds to compress to 550MB (-z1)

If you’re like me and you suddenly find yourself generating a bunch of large-ish
debs, you’ll quickly discover that the default compression for dpkg-deb is single-
threaded xz, which can be extremely slow. Add this PPA to your 8 or 16 core
buildslave and watch it scream through that end-of-build compression step.

bundles.yaml dsc deb

deb

deb

rosbundler cowbuilder

So, here’s basically our process. A bundle config file defines what our bundles
are, where the rosdistro for each one is, and what packages should be used to
“seed” rosinstall_generator.

bundles.yaml dsc deb

deb

deb

•Calls rosinstall_generator to get list of all packages in workspace.

•Generates debian/rules and debian/control (resolving rosdeps to system packages).

•Downloads all tarballs for workspace packages/repos

•Calls dpkg-buildpackage -S

rosbundler cowbuilder

Our rosbundler tool generates the required debian package metadata files,
including instructions for how to build everything (the debian/rules file), and
then downloads the tarballs, naming them according to debian conventions.

Keen observers will note that this doesn’t actually address a lot of the problems
listed above. By default, rosinstall_generator is always grabbing the latest
released version of every package, so this bundle is equivalent to whatever the
testing debs are at the moment that the bundle is built. How do we actually lock
in the versions of the packages?

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

 bond_core:

 release:

 packages:

 - bond

 - bond_core

 - bondcpp

 - bondpy

 - smclib

 tags:

ros/rosdistro/indigo/distribution.yaml Well, here’s the distribution file which actually defines the versions of
everything. This lives in a git repo, and a git repo can be tagged.

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

 bond_core:

 release:

 packages:

 - bond

 - bond_core

 - bondcpp

 - bondpy

 - smclib

 tags:

ros/rosdistro/indigo/distribution.yaml

tag this repo

to lock these versions

So we’ll tag the repo with the number of our major release, and that’ll forever
give us a reference point to regenerate this configuration.

rosbundles/debian/changelog

clearpath-2.0 (2.0.2-0) trusty; urgency=medium

 * [redacted]

 -- Mike Purvis <mpurvis@clearpathrobotics.com> Thu, 23 Jun 2016 15:32:59 -0400

clearpath-2.0 (2.0.1-0) trusty; urgency=medium

 * [redacted]

 -- Mike Purvis <mpurvis@clearpathrobotics.com> Wed, 22 Jun 2016 16:04:05 -0400

In fact, we use a regular Debian changelog file which lives alongside the
bundles.yaml file, and the version specified in each changelog entry refers
directly to a rosdistro tag.

Each major release of our entire software
stack is a tag on our rosdistro repo,

locking the version of every package.

Big and bold so it can’t be missed.

bundles.yaml dsc deb

deb

deb

•Checks out rosdistro repo at the branch/tag specified in the yaml config.

•Refreshes the rosdistro cache.

•Calls rosinstall_generator to get list of all packages in workspace.

•Generates debian/rules and debian/control (resolving rosdeps to system packages).

•Downloads all tarballs for workspace packages/repos

•Calls dpkg-buildpackage -S

rosbundler cowbuilder

So to finish this out, when we’re building a “release” bundle, we use the package
versions from a tag of our rosdistro, rather than the master branch.

P R E R E L E A S E

version is a timestamp

rosdistro from branch tip

R E L E A S E

version from changelog

rosdistro from tag

And prior to tagging a legit “release”, we can still build a “prerelease”, which is
each package at its latest version. Eventually we may tag those as well— it
would be nice to understand which repos have mutated when we’re looking at a
regression.

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

Now, we’ve talked a lot about the release stanza of the distribution.yaml entry—
this is the entry whose git URL references a GBP repo, one managed by bloom.

 actionlib:

 release:

 tags:

 release: release/indigo/{package}/{version}

 url: https://github.com/ros-gbp/actionlib-release.git

 version: 1.11.6-0

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: indigo-devel

But the source stanza is actually where the bundle really comes into its full
potential. Let’s look at a new rosinstall_generator flag.

rosinstall_generator desktop_full --rosdistro indigo

--deps --tar --upstream-development

Adding —upstream-development means that instead of getting the source from
the bloom GBP repo, we get it directly from the source repo.

rosinstall_generator

- tar:

 local-name: actionlib

 uri: https://github.com/ros-gbp/actionlib-release/archive/release/indigo/actionlib/1.11.6-0.tar.gz

 version: actionlib-release-release-indigo-actionlib-1.11.6-0

- tar:

 local-name: actionlib

 uri: https://github.com/ros/actionlib/archive/indigo-devel.tar.gz

 version: actionlib-indigo-devel

--upstream-development

default

Above is what we get by default— this is the latest released source, pulled from
the GBP repo. Underneath is with the —upstream-development flag, this is the
development branch from the upstream repo.

Can you see what’s happening here? There’s a new type of bundle that’s
possible, where we don’t need to bloom at all.

P R E R E L E A S E

version is a timestamp

rosdistro from branch tip

R E L E A S E

version from changelog

rosdistro from tag

D E V E L

version is a timestamp

rosdistro from branch tip

upstream devel sources

The devel bundle is built entirely of devel sources. Seems scary right? This has
actually worked out phenomenally well for us, for a few reasons.

D E V E L

version is a timestamp

rosdistro from branch tip

upstream devel sources

• test fleet is always running the latest devel code.

• when something breaks upstream (eg, ros_comm), we
catch it immediately.

• we’re motivated to push patches, since we get the fix
right away.

• we bloom for logical functional releases releases only.

• devel bundle can feed other testing workflows, including
multi-robot simulation testing and unit test jobs.

devel prerelease release

2.0 clearpath-2.0devel-robots
clearpath-2.0devel-nimbus

clearpath-2.0devel-sdk

clearpath-2.0pre-robots
clearpath-2.0pre-nimbus

clearpath-2.0pre-sdk

clearpath-2.0-robots
clearpath-2.0-nimbus

clearpath-2.0-sdk

2.1 clearpath-2.1devel-robots
clearpath-2.1devel-nimbus

clearpath-2.1devel-sdk

clearpath-2.1pre-robots
clearpath-2.1pre-nimbus

clearpath-2.1pre-sdk

clearpath-2.1-robots
clearpath-2.1-nimbus

clearpath-2.1-sdk

2.2 clearpath-2.2devel-robots
clearpath-2.2devel-nimbus

clearpath-2.2devel-sdk

clearpath-2.2pre-robots
clearpath-2.2pre-nimbus

clearpath-2.2pre-sdk

clearpath-2.2-robots
clearpath-2.2-nimbus

clearpath-2.2-sdk

B U N D L E T Y P E

M
A

JO
R

 V
E

R
SI

O
N

J E N K I N S

A P T LY

In terms of our actual infrastructure, we build the bundles on Jenkins, and then
send them to Aptly. Aptly is super cool for many reasons— two of them are that
it can run as a REST service, so you don’t have to deal with SSH or SCP, you can
just POST packages to it with curl if you want.

This is our build status page, which is source repo oriented as opposed to the
build farm one, which is deb package oriented.

Each row pops open to reveal the changelog and commits which have occurred
between the last release and the current level branch.

$ rosdistro_freeze_source -h

Freeze a rosdistro's source branch versions to hashes or tags. If

neither

--release-version nor --release-tag are specified, the hashes of the

current

devel branches are used.

positional arguments:

 index Path to a local index.yaml file.

 dist_names The names of the distributions (default: all)

optional arguments:

 -h, --help show this help message and exit

 -j JOBS, --jobs JOBS How many worker threads to use.

 -q, --quiet Suppress updating status bar (for script/CI

usage).

 --release-version Freeze to the hash of current release tag.

 --release-tag Freeze to name of current release tag.

rosdistro_freeze_source

 actionlib:

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: indigo-devel

rosdistro_freeze_source

 actionlib:

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: indigo-devel

 actionlib:

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: 32ce9fdb3194228795a2f31faee8259dd57ae452

 actionlib:

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: 1.11.6

Once a major release for us goes into maintenance, we “freeze” the devel
branches to point to the tag of the last release. This allows development to
move forward, while still giving us a stable level build upon which to put hot
fixes.

D E M O N ST R AT I O N

https://github.com/mikepurvis/ros-bundling

T H E F U T U R E

catkin test, catkin docs.
dropping release stanzas and blooming, consi.
once the ubuntu store is open source, investigate packaging as a snap.

catkin docs • implement as catkin_tools plugin

• make rosdoc_lite into plain python package, so the
plugin could depend on it.

• allow building all docs in one big workspace, using the
same parallel executor model as catkin build.

https://github.com/catkin/catkin_tools/issues/381

One of the big wins with this approach would be potentially giving more
opportunities to supply global overrides. So, same as how building the bundle
lets you do fun things like set compiler flags that correspond to the architecture
of your robot PC, or archive debug symbols, a future catkin docs might allow
injecting a Doxygen theme, etc.

catkin test • implement as catkin_tools plugin

• safe parallel testing of a workspace which may contain
cmake and catkin (and ament?) packages.

• have a scheme for tests to declare and then properly
mutex shared testing resources, like the Gazebo port.

• would work for CI, but also be a better story locally for
devs using catkin_tools.

https://github.com/catkin/catkin_tools/issues/397

One of the other major functional gaps in catkin_tools right now is not having a
good story for running tests.

source only • drop release stanzas from internal distribution yaml.

• only bloom packages which are going for public release,
otherwise do only catkin_prepare_release to uprev
package.xml and create tag.

• depends on source manifest caching for dependency
resolution.

source only • drop release stanzas from internal distribution yaml.

• only bloom packages which are going for public release,
otherwise do only catkin_prepare_release to uprev
package.xml and create tag. actionlib:

 source:

 type: git

 url: https://github.com/ros/actionlib.git

 version: indigo-devel

 release_version: 1.11.6

Snaps • Packaging as a squashfs is compelling.

• Delta updates are compelling.

• Multiple release streams (edge, RC, etc) is very
compelling.

• Blocked on the repository code being open sourced.

T H A N K S

William and Dirk

Jon Bohren

Nikolaus Demmel

Mike Ferguson

Contributors to ros-install-osx

Clearpath

https://ottomotors.com/company/careers

OSRF staff for maintaining the tools and entertaining my crazy ideas and PRs.
Jon for re-architecting the catkin_tools backend.
Nikolaus for helping with OS X issues, and contributing the no-sudo option to
rosdep.
Mike Ferguson for buildbot-ros and getting me into debian packaging and
cowbuilder.
Clearpath for being an awesome place to work, and for allowing me time to
work on this, and especially my colleagues on the platform and tools/
infrastructure teams. Obviously, we are hiring.

