
Strengths, Weaknesses, and Developer Insights
ROSCon Hamburg 2015

Dave Coleman
dave@dav.ee

Overview

Establish Credibility 1min

Background of MoveIt! 5min

What it's done well 5min

Typical use patterns 5min

Demystifying complexity 5min

Amazon Picking Challenge 5min

Where MoveIt! needs improvement 4min

Future Roadmap 10min

Q&A 5min

Establish Credibility 1min

● PhD Student At CU Boulder with Nikolaus Correll
● Interned with E. Gil Jones & Ioan Sucan at Willow Garage

○ Created Setup Assistant
● Have used and contributed to MoveIt! since before it was

released
● Am a MoveIt! maintainer
● Have contributed to OMPL and many other ROS packages

Background of MoveIt! 5min

Easy to use framework for motion planning, manipulation, 3D
perception, kinematics, control and navigation

● Created at Willow Garage by
Ioan Sucan, Sachin Chitta,
many others

● Collaboration between many
organizations

● Predecessor: arm_navigation
announced in March 2010

● 31 contributors to moveit_core
● Written in C++ with Python

bindings
● https://github.com/ros-planning/

1:00

http://www.youtube.com/watch?v=vtl1lRWrhWk
https://github.com/ros-planning/
https://github.com/ros-planning/

240 people registered, 150 who attended

It's popular.
● #3 Package in ROS (ROS survey)
● 700 Members on Mailing list
● Number of installations 2015: 10,089
● ICRA 2015

○ 11 Papers cited/used MoveIt!
● IROS 2015

○ 5 Papers cited/used MoveIt!
● Has been run on over 65 robots worldwide

Community

Exciting Developments
● Benchmarking getting rewrite

○ Mark Moll / Kavraki Lab
● STOMP being revived

○ Jorge Nicho / SwRI
● Descartes Cartesian Planner

○ Shaun Edwards / SwRI
● Collision detection plugin

○ Michael Ferguson / Fetch
● New release maintenance manager

○ Michael Ferguson / Fetch

What it's done well 5min

6:00

Setup Assistant

Rviz Motion Planning Plugin

Comparing research libraries
● OMPL

Open Motion Planning Library

● SBPL
Search Based Planning Library

● CHOMP
Covariant Hamiltonian
Optimization

● STOMP
Stochastic Trajectory
Optimization

● FCL
Fast Collision Checking Library

Cohen, B.; Sucan, I.A.; Chitta, S., "A generic infrastructure for benchmarking motion planners," in
Intelligent Robots and Systems (IROS), 2012

● PCD
Proximity Collision Detection

● IKFast
Analytical Inverse Kinematics
Solver

● KDL
Kinematics Dynamics Library -
Inverse Kinematics

● Octomap
3D occupancy grid mapping

Robot Agnostic

Flexibility (but also complexity)

● Can Handle:
○ Groups of joints
○ Multivariable joints
○ Mimic joints

● Notions of:
○ Cartesian-Space Planning
○ Joint-Space Planning
○ Orientation Constraints
○ Visibility Constraints

Typical Use Patterns 5min

11:00

Rviz Motion Planning Plugin

Commander
Known commands:

 help show this screen

 id|which display the name of the group that is operated on

 load [<file>] load a set of interpreted commands from a file

 save [<file>] save the currently known variables as a set of commands

 use <name> switch to using the group named <name> (and load it if necessary)

 use|groups show the group names that are already loaded

 vars display the names of the known states

 show display the names and values of the known states

 show <name> display the value of a state

 record <name> record the current joint values under the name <name>

 delete <name> forget the joint values under the name <name>

 current show the current state of the active group

 constrain <name> use the constraint <name> as a path constraint

 constrain clear path constraints

 eef print the name of the end effector attached to the current group

 go <name> plan and execute a motion to the state <name>

 go <dir> <dx>| plan and execute a motion in direction up|down|left|right|forward|backward for distance <dx>

 go rand plan and execute a motion to a random state

 plan <name> plan a motion to the state <name>

 execute execute a previously computed motion plan

 rotate <x> <y> <z> plan and execute a motion to a specified orientation (about the X,Y,Z axes)

 tolerance show the tolerance for reaching the goal region

 tolerance <val> set the tolerance for reaching the goal region

 wait <dt> sleep for <dt> seconds

 x = y assign the value of y to x

 x[idx] = val assign a value to dimension idx of x

 x = [v1 v2...] assign a vector of values to x

 trace <on|off> enable/disable replanning or looking around

 ground add a ground plane to the planning scene

 allow replanning <true|false> enable/disable replanning

 allow looking <true|false> enable/disable looking around

> a = current
> go rand
> wait 5
> plan a

"move_group" Python Interface
group = moveit_commander.MoveGroupCommander("left_arm")

pose_target = geometry_msgs.msg.Pose()
pose_target.orientation.w = 1.0
pose_target.position.x = 0.7
pose_target.position.y = -0.05
pose_target.position.z = 1.1
group.set_pose_target(pose_target)

plan1 = group.plan()

"move_group" C++ Interface
moveit::planning_interface::MoveGroup group("right_arm");

geometry_msgs::Pose target_pose;
target_pose.orientation.w = 1.0;
target_pose.position.x = 0.28;
target_pose.position.y = -0.7;
target_pose.position.z = 1.0;
group.setPoseTarget(target_pose);

moveit::planning_interface::MoveGroup::Plan my_plan;
bool success = group.plan(my_plan);

ROS Services & Actions

Pro-Tip: Use C++ classes individually
robot_model_loader_.reset(new robot_model_loader::RobotModelLoader("robot_descrition"));
robot_model_ = robot_model_loader_->getModel();
planning_scene_.reset(new planning_scene::PlanningScene(robot_model_));
tf_.reset(new tf::TransformListener(nh_));
psm_.reset(new planning_scene_monitor::PlanningSceneMonitor(
 planning_scene_, robot_model_loader_, tf_,"my_scene"));
psm_->startStateMonitor("/joint_states", "");
psm_->startPublishingPlanningScene(planning_scene_monitor::PlanningSceneMonitor::
 UPDATE_SCENE, "my_planning_scene");
visuals_tools_.reset(new MoveItVisualTools(robot_model_, planning_scene_monitor_));
planning_pipeline_.reset(new planning_pipeline::PlanningPipeline(robot_model_ nh_,
 "planning_plugin", "request_adapters"));
trajectory_execution_manager_.reset(new trajectory_execution_manager::
 TrajectoryExecutionManager(robot_model_));

Best for researchers who want to modify code

Demystifying Complexity 5min

16:00

Many Plugins

Planning Scene Monitor

Planners
OMPL
● Lydia Kavraki's lab
● Sampling-based

planners
● Stochastic
● Probabilistically

complete
● Typically no optimality

guarantees
● Computationally fast
● More reliable runtime

for real-world
applications

● Many variants of
algorithms available

SBPL
● Maxim Likhachev's lab
● Graph-based planners
● Deterministic
● Resolution complete
● Optimality guarantees
● Requires pre-processing

phase
● Computationally

expensive
● More reliable solutions

for real-world
applications

● Renewed work from
Michael Ferguson

CHOMP/STOMP
● Kalakrishnan et al
● Optimization-based

planner that generates
smooth well behaved
collision free motion
paths in reasonable time

● Can incorporate
additional objective
functions - collision
avoidance and
smoothness

● CHOMP being
resurrected by ROS
Industrial group

Experience Planners

Planner Request Adapters
● AddTimeParameterization

○ Modifies the timestamps of a kinematic (position-based)
trajectory to respect velocity and acceleration constraints

○ Uses iterative parabolic time parameterization
● FixWorkspaceBounds

○ If no minimum workspace bounds is specified, sets to a default
● FixStartStateBounds

○ Tweaks joints to not be outside joint limits
○ Accounts for floating point and encoder noise

● FixStartStateCollision
○ Tweaks start state to not be in collision with environment
○ Creates a new planning request with modified start state

● FixStartStatePathConstraints
○ Plans separate path from invalid start state to valid start state

Adapts research theory to real world hardware

IK Solvers
● KDL

○ Kinematics Dynamics Library, OROCOS
● IKFast

○ OpenRave Analytical
● Robot-specific custom solvers

○ PR2

Amazon Picking Challenge 5min

21:00

http://www.youtube.com/watch?v=EWhKIOWp9pA

Workspace Analysis

Baxter Parallel Electric Gripper Yale OpenHand 3-Finger Gripper

Kinova Jaco2 + 1m Vertical Gantry

Architecture (Pretty Standard)

KDL Cartesian
Planner

Trajectory Action
Server

SDF Fusion
Spatio-Temporal

Segmentation
2x Asus Xtion Pros

DepthMap
ROS Msg

ros_control
Velocity-based

Trajectory Controller

Joint Trajectory
ROS Msg

Embedded
Controllers

USB

BoundingBox PlanningScenePickNikManager

ManipulationManager GraspPlannerGraspGenerator GraspFilter

Custom Obj
ROS Msg

OMPL
RRTConnect

Jaco2 +
1m Vertical

Gantry

Motion Planning

https://www.youtube.com/watch?v=isVq-IfGUTw&feature=youtu.be

http://www.youtube.com/watch?v=isVq-IfGUTw

Challenge Takeaways
● Simplest possible grasping → suction
● Low cost hardware → visual servoing
● Reduce calibration needs
● 2 mobile bases won → larger workspace
● Slim arms → better reachability
● Good visualizations → introspection and development
● Perception and manipulation teams must work closely
● Test whole system working together often

MoveIt! used by at least 10 teams:
○ PickNik, Z.U.N., University of Washington, Team IntBot,

NUS_SMART_HAND, Team Applied Robotics, Team WPI,
University of Alberta Team, Plocka Packa, Team CVAP

None of the winning teams used MoveIt!

Team RBO - 1st Place
TU Berlin
148 points

Barrett WAM arm
● Backdrivability key to

skillful interactions with the
environment

Nomadic XR4000 mobile base
● Omnidirectional /

holonomic
● Very large workspace

Did not rely on motion planning

Hybrid automaton composed of
sequences of controllers with
sensor-based transitions.

Vacuum attachment tool with
suction cup drilled into side of
fender

“Simple but robust” RGB object
recognition algorithm

Team MIT - 2nd Place
MIT

88 points

ABB 1600ID
● Sub-millimeter precision
● Internal canals for cables

Custom dual-purpose end effector
● Aviation-grade aluminum
● Spatula-like finger nail
● Suction also

Used MIT Drake (Locomotion
Group at MIT) for motion
planning

Automatically chooses which
motion primitive to use based
on dynamics simulator

● grasp, suck, scoop,
toppling, push-rotate

Kinect2 cameras mounted on
frame, Realsense on arm

Outsourced perception to a
robotics startup - Caspen
Robotics

Team Grizzly - 3rd Place
Oakland University
w/Dataspeed Inc.

35 points

● Rethink Baxter
● Custom Mobile Base
● Yale OpenHand
● Suction gripper
● Kinect2 on Head

Custom Cartesian motion
planning algorithm accepted
position and orientation
commands from the perception
system

Where MoveIt! needs improvement 4min

 (and where you can help!)

26:00

Motion Planner Reliability
● Sometimes fails with difficult to understand explanations
● Sometimes generates very suboptimal paths

Solutions:
● Hybridize several planning attempts (threads)
● Plan with cost functions, e.g. RRT*, PRM*
● Increase the time MoveIt! spends on smoothing paths
● For some applications, planners other than OMPL's defaults

are better
● Improve user feedback to diagnose setup issues

○ Check your joint space is parameterized correctly (<2pi)
○ Introspection tools

Obstacle Clearance
Can generate plans that come very close to obstacles
Solutions:
● Add out of box support for biasing trajectories away from

obstacles
● Cost-based OMPL, STOMP, CHOMP

Grasping Support
Difficult to generate grasps in MoveIt!
Solution:
● Provide default URDF + SRDF compatible

grasp generator
● Clearer documentation on how to

integrate third party grasping pipeline

Documentation
● Need more exhaustive documentation from

community support (you!)
● Tutorials for how to use MoveIt! beyond

quick start demo
● Make it easier for our many users to

contribute back

Future Roadmap 10min

Community meeting's end of year goals
● Integrate better support for humanoid kinematics
● Integrate benchmarks updates
● Resurrect support for other types of planners

(STOMP)

30:00

Visual Servoing Support
● Once a trajectory is planned, no easy way to integrate visual or

tactile feedback
Solution:
● Position/pose-based visual

servoing (PBVS)
● Hooks to modify plan based

on alignment of target object
● Ability to add meta-data to

trajectories indicating when
to use VS, what objects to
track

● Requires much tighter
coupling with controllers,
planners, and perception
system

Planning with Behaviors

Free Space Planning
OMPL

Cartesian Straight Line
+ Visual Servoing
+ Impedance Control

Grasp Tool

Cartesian Straight Line
+ Impedance Control

Cartesian Straight Line
+ Impedance Control

Free Space Planning
OMPL

Semi-constrained
trajectory using
Descartes

Sense-Plan-Act & ROS Control

Geometric Planner Time
Parameterization

Position-based
Trajectory

Trajectory Action
Server

Position, Velocity,
Acceleration
Trajectory

Octomap &
Planning Scene

Image/Depth
Sensor

PointCloud2
ROS Msg

Velocity-based
Trajectory Controller

Joint Trajectory
ROS Msg

Embedded
Controllers

Ethernet,
etc

Realworld

Real-time Reactive
Control

● Faster connection for streaming commands
● Integrate ros_control with Setup Assistant
● Rename MoveIt ControllerManager to ControllerInterface
● More advanced plugin than SimpleControllerManager
● Switching controllers

Affordance Templates
Human in the loop tools for high level commands such as
more sophisticated interactive markers

Calibration
● Integrate better calibration packages

○ ROS Industrial - industrial_calibration
○ Fetch Robotics - robot_calibration

● More clearly document how this should be integrated

moveit_core

moveit_ros

2012 2013 2014 2015

Code Frequency

WG Closes

Stability vs. Progress
● MoveIt! needs to stay current
● Other motion planning frameworks are very capable

○ OpenRave, MIT Drake, MuJuCo + Whole Body Planning, etc

Distributed Software Collaboration Is Hard
● Currently we have 50 open pull requests
● Need continuous integration badly
● Need more simulation tests

If there are good features worth upgrading
to, breaking changes are tolerable.

Proposal: Consolidate to One Repo

Too many repos to keep synced
moveit_core
moveit_ros
moveit_planners
moveit_docs
moveit_msgs
moveit_robots
moveit_ikfast
moveit_commander
moveit_kinematic_tests
moveit_advanced
moveit_setup_assistant
moveit_metapackages
moveit_plugins
moveit_resources
moveit_pr2

packages not yet in ros-planning group:
moveit_benchmarks
moveit_visual_tools
moveit_simple_grasps
moveit_python
moveit_web
moveit_whole_body_ik
industrial_moveit

Plus many ros-planning packages not prefixed
with moveit_*

Overall
● MoveIt! is awesome
● Successful because it is easy for beginners
● Needs many more features and improvements
● Stability (stagnation) should not be the #1 focus
● Please contribute!

Q & A 5min

Do you like to MoveIt MoveIt?

Thanks to Mike Ferguson, Sachin Chitta, Ioan
Sucan, Shaun Edwards, Jon Bohren, Conor
Brew, Acorn Pooley, Dave Hershberger, Chris
Lewis, Jorge Nicho, Ben Chretien, Adolfo
Rodriguez. Kei Okada, Stefan Kohlbrecher, and
many more...

40:00

