
Docker-based Build Farm for
ROS
Tully Foote (OSRF), Dirk Thomas (OSRF), Dejan Pangercic (Bosch),
Daniel Di Marco (Bosch), Arne Hamann (Bosch)

Developed by OSRF, sponsored and tested by Bosch.

Custom Build Farm - Motivation

What does it do?

● automatically build .deb files from your packages in order
● continuous integration (unit tests)
● autodocumentation (doxygen, sphinx, epydoc, …)

OSRF & GitHub are awesome, why would you want your own build farm?

● host your code on your own servers (i.e. you don’t want to or are not allowed to use public github)
● distribute your proprietary ROS packages (only) to customers
● keep specific package versions (e.g. for stability)

2

Why it is better (than the old build farm)

● perfectly reproducible builds, also in parallel (thanks to Docker)
○ also locally on your dev machine (pre-release jobs)

● allow hosting source code on non-public servers
● scripted deployment & update

○ old build farm installation was not reproducible

● simplify deployment of custom setups, more customization options
● black/white-listing packages
● build non-catkin packages

3

Jenkins Master Jenkins Slave (n instances) Repository/Web Host

Reprepro

Slave

Overview - Hardware

4

Master +
Plugins

Deployed from buildfarm_deployment

Package specific jobs

Overview

5

local ros_buildfarm
instance:
generate_config_jobs.py
--indigo …

Configuration Jobs

configure indigo release jobs
script

configure indigo doc jobs script

apt repo
(building,
testing, main)

configure indigo devel jobs
script

indigo doc job
package fooindigo doc job

package fooindigo doc job
package fooindigo doc job

package foo

indigo devel job
package fooindigo devel job

package fooindigo devel job
package fooindigo devel job

package foo

indigo release job
package fooindigo release job

package fooindigo release job
package fooindigo release job

package foo

web server*.html

*.deb

Deployed from:
ros_buildfarm

Jenkins Jobs

Management jobs:
● rosdistro cache: recreate binary rosdistro cache
● import_upstream: call reprepro-updater to fetch upstream .deb packages
● check_slaves: check disk space on jenkins slaves
● release-status-page: create overview page on the repo server
● *-reconfigure/-trigger-jobs: update/run build jobs
● sync-packages: move packages from building to testing

Build jobs:
● devel: build & run tests
● release: build binary .debs
● source
● doc

6

7

Devel Job - Components Interaction

Initial Setup (Deployment)

deployment: “bootstrap” your build farm environment, only done once (ROS agnostic)

● fork & adapt ros_buildfarm_deployment_config
○ insert information about your servers, ssh keys, jenkins login

● check it out on your servers, run
○ ./install_prerequisites.bash; ./reconfigure.bash master | slave | repo

jenkins job configuration:

● fork & adapt ros_buildfarm_config
○ create your own distribution, e.g. deepfield-indigo

● if you want to build on top of existing packages:
○ fork & adapt rosdistro
○ add your distribution, list of packages (as generated

by bloom-release)
8

distributions:
 indigo:
 doc_builds:
 default: deepfield-indigo/doc-build.yaml
 released-packages-without-doc-job:

 deepfield-indigo/doc-released-build.yaml
 notification_emails:
 - daniel.dimarco@de.bosch.com
 release_builds:
 default: deepfield-indigo/release-build.yaml
 source_builds:
 default: deepfield-indigo/source-build.yaml

About DeepField Robotics

● Corporate Start-Up within Robert Bosch GmbH
● ~ 20 people with robotics and/or agricultural background

9

Our Use Case

● our agricultural robot BoniRob is fully ROSified
● deliver proprietary ROS packages (& updates) to customers

Until recently:

● catkin_make install

● tar -cf …

➜ cumbersome, easy to mess up updates

better: apt-get install ros-indigo-deepfield

10

Overview - DF Setup

Setup:

● 3 VMs on a local server: jenkins-master, jenkins-slave, repository
● custom built proprietary drivers added as rosdeps
● external webserver (Google Cloud) where docs, rosdistro, repositories are mirrored

○ accessible via https, one set of credentials per user

● additional jenkins server for testing, static code analysis

Challenges:

● custom rosdep packages
○ i.e. drivers we must not make publicly available

● private repositories on GitHub Enterprise (and Atlassian Tools?)

11

rosdistro Custom Dependencies

If your source code builds on standard ROS packages:

● by default, buildfarm builds all packages from source
● so, dependencies in the package.xml can be resolved
● but we don’t have e.g. roscpp source packages & just want to use the pre-built pkgs from OSRF

➡ Use Mike Purvis’ rosdep-generator¹:

● generates rosdep files for OSRF buildfarm pkgs (i.e. map rospack name to debian name)
● e.g.

actionlib: {fedora: ros-indigo-actionlib, ubuntu: ros-indigo-actionlib}
actionlib_msgs: {fedora: ros-indigo-actionlib-msgs, ubuntu: ros-indigo-actionlib-msgs}

● put the resulting rosdep files in your rosdistro repository

12
¹ https://github.com/mikepurvis/rosdep-generator

Private Repos & GitHub Enterprise

Just replace github.com with your enterprise instance in buildfarm_deployment_config

Still some assumptions wrt. code hosting platform (i.e. public GitHub):
● unauthenticated downloads from raw.github.com: rosdistro, buildfarm_config

➜ put buildfarm_config, rosdistro on repo web server

● checkouts from public readable git repositories
○ create OAuth tokens
○ put into checkout url in rosdistro distribution

● open pull requests (bloom-release)

○ adjust rosdistro manually

13

Caveats

Some steps are not automated & need to be triggered manually:
● trigger import_upstream when new upstream packages are released
● sync packages from testing to main

“docker pull” hangup (v 1.6.2)
● update to 1.8.2 seems to have fixed this

A good overview over the tools involved is (highly) recommended:
● Puppet
● Jenkins & Groovy scripting
● git-buildpackage
● Docker
● bloom

14

Misc. Questions for Discussion

● when does OSRF switch to the new build farm?
● difference to buildbot-ros (bird-eye view)

○ scalability

● users (that we know of):
○ Fraunhofer IPA
○ Yujin
○ Bosch
○ Aldebaran

15

Documentation

●

●
●

●

16

http://wiki.ros.org/buildfarm
http://wiki.ros.org/buildfarm
http://54.183.65.232/
http://54.183.65.232/
http://54.183.26.131:8080/
http://54.183.26.131:8080/
https://groups.google.com/forum/#!forum/ros-sig-buildfarm
https://groups.google.com/forum/#!forum/ros-sig-buildfarm

