CRATES: Cognitive Robotics Architecture for Tightly-coupled Experiments and Simulation

Andrew Symington
University College London
a.symington@ucl.ac.uk

ROSCON 2014
Introduction

• My position in CompLACS
• Coordinating multiple agents in order to achieve some complex task (through decomposition)
• EU-based collaboration
 – Theorists
 – Engineers
 – ERC
• Quadcopters
• Theory → Simulation → Experiments
Simulation: QRSim

- Experiments = time + risk
- QRSIM (to appear in IROS'14)

- Features
 - Platform dynamics
 - Environment noise
 - Sensor noise

- Issues
 - CRATES: migration to ROS
Simulation: CRATES

Topics
- Estimate
- Control
- Truth

Services
- Waypoint
- Velocity
- VelocityHeight
- AnglesHeight

Real platforms
- hal_quadrotor
- platform_asctec
- hal_sensor_xyz

Simulated platforms
- hal_quadrotor
- hal_sensor_xyz
- sim

WiFi
- multimaster_fkie
- ros_client

High level controller
- High-level controller is completely platform agnostic.

Platform-specific drivers that implement virtual methods from hal_quadrotor.

Simulator can spawn a number of models with plugins that provide hal_quadrotor.
Simulation: Improved GNSS model

- GNSS performance → controller performance
- Time-correlated
 - Ephemerides
 - Satellite clock
 - Receiver clock
 - Ionosphere
 - Troposphere
- New GPS module
- IGS traces
Simulation: CRATES
Hardware: platform overview

• Ascending Technologies Pelican (5)
• Platform limits
 – Battery < 20 minutes
 – Max 5m/s velocity, 200 deg/s yaw rate
 – 650g max payload
 – 10 Hz < measurements / control < 10 Hz
 – Firmware flashing not permitted
• Supplied with manual transmitter
• Added a 2.0Ghz Atom “SBC”
Hardware: safety

- Levels
 - Manufacturer
 - Finite state model*
 - Safety module*
Hardware: ground truthing

- **Goal:** accurate position
- **Errors**
 - Code-phase: ~meters
 - Carrier-phase: ~decimeters
- **Cycle slip**
- **Hardware**
 - NV08C-CSM-BRD
 - Tallysman GPS/GLO
Hardware: ground truthing

Diagram showing GNSS error and cycle slips

Cycle slips

Histogram of Distance between Precise and Regular position (m)

Mean error
Hardware: putting it all together
Hardware: mechanical issues

- Propeller fatigue
- Leg fatigue
- CNC legs + fittings
Hardware: black box FCS

Control loop - Attitude / Position control (1000Hz)

- Attitude Control (CTRL)
 - Roll
 - Pitch
 - DesYawRate
 - DesThrust

- Attitude / Position Control
 - RX Decoder
 - RX
 - EN
 - MASK
 - OPTIONS
 - GPS
 - BARO

Attitude loop - Stabilization control (1000Hz)

- Direct Motor Control (DMC)
 - RollRate
 - PitchRate
 - YawRate
 - Thrust

- Stabilization Control
 - Orientation
 - GYRO
 - MAG
 - ACCEL

- Electronic Speed Controllers
 - RPM-Motor1
 - RPM-Motor2
 - RPM-Motor3
 - RPM-Motor4

- Motors

Autonomous loop (15Hz)

- Navigation Engine
 - State

- Control
 - Goal

- Possible goals
 - Waypoint, Yaw
 - 3D Velocity, Yaw
 - 2D Velocity, Height, Yaw
 - Angles, Height
 - Takeoff (to altitude)
 - Land
 - Hover (stay at current point)
Theory: Path Integral Control

- Coordinate actions of multiple quadrotors
- Path Integral Control
 - **COST**: Complex task is specified through a cost function
 - **DYNAMICS**: Controlled noisy movement
 - **CONTROL**: Given the current state the optimal control is computed with sampling methods, based on rollouts

- Approach
 - **FEEDBACK**: Control is re-computed after state update
 - **SAMPLING**: Computations based on a simplified model
Theory: Holding Pattern

• Task
 – Aircraft queue up for landing above a landing zone
 – They must maintain a safe distance from each other
 – Aircraft cannot hover; must maintain a minimum velocity

• Cost
 – Cost for too low or too high velocity
 – Cost for pair-wise distance
 – Cost for distance to the landing zone
 – Cost for collisions
Holding Pattern : 5 platforms
Holding Pattern : 10 platforms
Holding Pattern : 15 platforms
Results

• Demo
Experimental results
Conclusion

• Integration with mav_tools and hector_quadrotor
• HAL-based abstraction
 – Does this generalise?
• Some questions about ROS
 – Command-line tool latencies
 – Message inheritance
 – Multimaster integration plans
 – Quality of Service guarantees

All code available open source: https://bitbucket.org/asymingt/crates