
 

CRATES: Cognitive Robotics 
Architecture for Tightly-coupled 
Experiments and Simulation

Andrew Symington
University College London
a.symington@ucl.ac.uk

ROSCON 2014



Introduction

• My position in CompLACS

• Coordinating multiple agents in order to achieve 
some complex task (through decomposition) 

• EU-based collaboration
– Theorists

– Engineers

– ERC

• Quadcopters

• Theory → Simulation → Experiments



Simulation: QRSim

• Experiments = time + risk

• QRSIM (to appear in IROS'14) 

• Features
– Platform dynamics

– Environment noise

– Sensor noise

• Issues

• CRATES: migration to ROS



Simulation: CRATES



Simulation: Improved GNSS model

• GNSS performance → controller performance

• Time-correlated
– Ephemerides
– Satellite clock
– Receiver clock
– Ionosphere
– Troposphere

• New GPS module

• IGS traces



Simulation: CRATES



Hardware: platform overview

• Ascending Technologies Pelican (5)

• Platform limits
– Battery < 20minutes
– Max 5m/s velocity, 200deg/s yaw rate
– 650g max payload
– 10Hz < measurements / control < 10Hz
– Firmware flashing not permitted

• Supplied with manual transmitter

• Added a 2.0Ghz Atom “SBC”



Hardware: safety

• Levels
– Manufacturer

– Finite state model*

– Safety module*



Hardware: ground truthing

• Goal: accurate position

• Errors
– Code-phase: ~meters

– Carrier-phase: ~decimeters

• Cycle slip

• Hardware
– NV08C-CSM-BRD

– Tallysman GPS/GLO



Hardware: ground truthing

Cycle slips

Mean error



Hardware: putting it all together



Hardware: mechanical issues

Propeller fatigue Leg fatigue CNC legs + fittings



Hardware: black box FCS



Theory: Path Integral Control

• Coordinate actions of multiple quadrotors

• Path Integral Control
– COST: Complex task is specified through a cost function
– DYNAMICS: Controlled noisy movement
– CONTROL: Given the current state the optimal control is 

computed with sampling methods, based on rollouts

• Approach
– FEEDBACK: Control is re-computed after state update
– SAMPLING: Computations based on a simplified model



Theory: Holding Pattern

• Task
– Aircraft queue up for landing above a landing zone

– They must maintain a safe distance from each other
– Aircraft cannot hover; must maintain a minimum velocity

• Cost
– Cost for too low or too high velocity
– Cost for pair-wise distance

– Cost for distance to the landing zone
– Cost for collisions



Holding Pattern : 5 platforms



Holding Pattern : 10 platforms



Holding Pattern : 15 platforms



Results

• Demo



Experimental results



Conclusion

• Integration with mav_tools and hector_quadrotor 

• HAL-based abstraction
– Does this generalise?

• Some questions about ROS
– Command-line tool latencies

– Message inheritance

– Multimaster integration plans

– Quality of Service guarantees

All code available open source: https://bitbucket.org/asymingt/crates


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

