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Introduction

* My position in CompLACS

* Coordinating multiple agents in order to achieve
some complex task (through decomposition)

* EU-based collaboration
— Theorists
— Engineers
— ERC

* Quadcopters

* Theory — Simulation — Experiments




Simulation: QRSim

Experiments = time + risk
QRSIM (to appear in IROS'14

Features

— Platform dynamics
— Environment noise
— Sensor noise

Issues
CRATES: migration to ROS

Simulating Quadrotor UAVs in Outdoor Scenarios
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Abstract—Motivated by the risks and costs associated with
outdoor experiments, this paper presents a new multi-platform
quadrotor simu he simulator implements a novel second-
order dynamic model fc otor, produced through evo-
lutionary programming, and explained by domain knowledge.
The model captures the effects of mechanics, aerodynamics,
wind and rotational stabilization control on the flight platform.
In addition, the simulator implements military-grade models
for wind and turbulence, as well as noise models for sate

navigation, barometric altitude and orientation. The usefulness
of the simulator is shown qualitatively by a comparing how
coloured and White pesition noise affect the performance of
offiine, range-only SLAM. The simulator is intended to be
used for planning experiments, or for st ting application
performance over a wide range of operating conditions

index Terms—Unmanned Aerial Systems, Simulation

L. INTRODUCTION

rial vehicles (UAV) have received significant
y and
civilian applications that they enable. Quadrolors have proven
themselves as favourable plarforms for research, since they
are inexpensive, easy Lo fly, agile and safe o operate [1]

Conducting outdoor experiments with quadrotors requires
ide ather conditions and compliance with local aviation
regulations, uses significant resources, and puts platforms at
risk. It is therefore preferable to evaluate scenarios in sim-
ulation prior 1o experimentation, where possible. However,
the suitability of such an approach depends largely on the
fidelity of the simulator. The work in this paper is therefore
motivated by the need for a quadrotor simulator that (i)
enables multiple platforms 1o be simulated at the application
level, (if) provides realistic models for dynamics, wind and
sensor noise, and (iii) balances accuracy with speed. thereby
enabling real-time, or near real-time, performance

A great number of simulators exist as lools to for waining
radio control enthusiasts, but not as platforms for research
Research simulators based on first principles have been devel-
aped for USARSim [2] and Gazebo [3]. Both eapture the be-
haviour of an ideal platform’s mechanics and aerodynamics,
but not of the low-Ievel controller used 1o perform wtational
stabilization control. The design of the stabilization control
gorithm is usually proprietary, and therefore cannot be
modelled by first principles. Although effort has been made
to investigate the effect of wind and turbulence on quadrotor
dynamics [4], such research remains (o be integrated into the
widely-used simulators. More recent simulators are based on
the Robotic Operating System (ROS) and include Swarmsim
X (5] and Hector Quadrotor [6]. which use a PhysX and

Unmanned

research attention as 4 result of the numerous mil

Figure 1. A sereen shot of 4 QRSim search and reseue simulation.

Guzebo as simulation cores respectively. The contribution of
this work is the open-source! QRSIM simulator depicted in
Fig. 1 that distinguishes itself by:

1) A general second-order dynamic model that captures
the behaviour of mechanics. acrodynamics, wind and
stabilization control. The model is denved from flight
data using the co-evolutionary programming method,
with model parameters fitted to a specific platform
Models for environment and sensor noise, includin
military-grade model for wrbulence that is validated
inst a third-party implementation, and a satellite
navigation model that is validated against raw data.
Implemented as self-contained Matlab code that is
controllable over a TCP/P interface, with the @
being a modular and extensible ool for research.

The remainder of this paper is structured as follows. Sec
II discusses the dynamic model used in the simulator, and
shows how model paramelers were oblained for a specific
flight platform. Sec. TII then describes the environmental and
sensor noise models, as well as how they were validated. Sec
1V then provides aqualitative illustration of the usefulness of
the simulator by comparii

the effect of white and coloured
sensor noise on offline, range-only simultancous localization
and mapping (SLAM) for a single platform. Sec. V concludes
the paper, and discusses directions for futre work

11. QUADROTOR DYNAMICS AND CONTROL

A flight control system (FCS) performs sensing to deter-
mine orientation or position, and then selects comective motor
changes 1o stabilize the platform [1]. Orientation is usually

Source code is available at hps: githubcom/UCL-CompLACS grsim
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Simulation: CRATES
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Simulation: Improved GNSS model

GNSS performance — controller performance
* Time-correlated

— Ephemerides PP
— Satellite clock >p — R
— Receiver clock | T g
— lonosphere
— Troposphere
* New GPS module
.

|GS traces




Simulation: CRATES

Terminal e - m )BE == (100%) )] 19:57 {:}AndrewSymingtun

@ & E asymingt@ideapad-yogal3: ~

asymingt@ideapad-yogal3:~$ rosservice call /simulator/Insert UAVO model://hummingbird
success: True

status message: Successfully inserted model

asymingt@ideapad-yogal3:~$ |

00 00:01:35.500




Hardware: platform overview

* Ascending Technologies Pelican (5)

Platform limits

— Battery < 20minutes

— Max 5m/s velocity, 200deg/s yaw rate
— 650g max payload

— 10Hz < measurements / control < 10Hz
— Firmware flashing not permitted

* Supplied with manual transmitter
Added a 2.0Ghz Atom “SBC”




Hardware: safety

* Levels
— Manufacturer
— Finite state model*
— Safety module*




Hardware: ground truthing

* Goal: accurate position

* Errors
— Code-phase: ~meters
— Carrier-phase: ~decimeters

* Cycle slip
* Hardware

— NV08C-CSM-BRD
— Tallysman GPS/GLO




Hardware: ground truthing

Diagram showing GNSS errar and cycle slips
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Hardware: putting it all together
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Hardware: mechanical issues

Propeller fatigue Leg fatigue




Hardware: black box FCS

Control loop - Attitude / Position control (1000Hz)
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Attitude loop - Stabilization control (1000Hz)

Direct Motor Control (DMC)
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Possible goals

- Waypoint, Yaw

- 3D Velocity, Yaw
- 2D Velocity, Height, Yaw
- Angles, Height

- Takeoff (to altitude)
- Land

- Hover (stay at current point)

.



Theory: Path Integral Control

* Coordinate actions of multiple quadrotors

* Path Integral Control

— COST: Complex task is specified through a cost function
— DYNAMICS: Controlled noisy movement

— CONTROL: Given the current state the optimal control is
computed with sampling methods, based on rollouts

* Approach

— FEEDBACK: Control is re-computed after state update
— SAMPLING: Computations based on a simplified model



Theory: Holding Pattern

 Task

— Aircraft queue up for landing above a landing zone
— They must maintain a safe distance from each other
— Aircraft cannot hover; must maintain a minimum velocity

* Cost

— Cost for too low or too high velocity
— Cost for pair-wise distance

— Cost for distance to the landing zone
— Cost for collisions



Holding Pattern : 5 platforms




Holding Pattern : 10 platforms




Holding Pattern : 15 platforms
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Results

* Demo



Experimental results




Conclusion

* Integration with mav_tools and hector quadrotor

* HAL-based abstraction
— Does this generalise?

* Some questions about ROS
— Command-line tool latencies
— Message inheritance
— Multimaster integration plans
— Quality of Service guarantees

All code available open source: https://bitbucket.org/asymingt/crates
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