
Next-generation ROS:
Building on DDS

Sep 12th, 2014
Esteve Fernandez, Tully Foote, William Woodall, Dirk Thomas
ROSCon Chicago

What is ROS?

Where are we now?

● Maturity
● Robustness
● Community
● Openness
● Interoperability
● Modularity
● Federated development model
● Richness

Celebrating 5 year of ROS video

Hundreds of contributors to Hydro

http://youtu.be/PGaXiLZD2KQ
http://youtu.be/PGaXiLZD2KQ
http://youtu.be/tfjqtYqcSHU
http://youtu.be/tfjqtYqcSHU

Where is ROS used?

● Rethink Robotics: Baxter
● Unbounded Robotics: UBR-1
● ROS-Industrial: (de)palletizing
● RightHand Robotics: ReFlex Hand
● Boston Dynamics: ATLAS
● PAL Robotics: REEM-C
● HERE: 3D mapping cars
● Google ATAP: Project Tango
● Avidbots: Sweeper

and Scrubber
● Blue River Technology:

Precision Farming
● ...

How did we get there?

Ease of use

Flexibility

Scalability

Enabling reuse

Use the OSRF resources for ROS to:

Maintain what we have
with only little improvements over time

in order to not break backward compatibility?

vs.

Drive new development
to address current and upcoming needs!

Where do we want to go?

Address underserved use cases

support multi-robot systems
involving unreliable networks etc.

reduce the gap between
prototyping and final products

(better integration with)
real-time control

“bare-metal” micro controllers

But times have changed...

While each addresses very specific parts
building ROS on-top of these still requires a huge effort.

Exploration and prototyping

Looking back:
● 7 years ago there were not many suitable libraries available

● an industry-standard communication system

 = discovery + serialization + transport

● an active/evolving OMG standard
○ peer-to-peer middleware
○ configurable quality of service

to handle many networking situations
○ real-time capable

● Multiple implementations (~12)
○ commercial as well as open source implementations
○ proven in mission-critical environments (trains, dams, ship, etc.)
○ some are NASA- / DOD-verified
○ some small / embedded solutions

Data Distribution Service (DDS)

http://portals.omg.org/dds/content/page/specifications

ROS 2 - Built on DDS

+ ROS usability

less time
spent here

means more time to
spent here

Use your favorite DDS implementation

Compile Link-time decision →

No vendor lock-in

. . .

Abstract ROS middleware interface

Userland code

ROS client library API

Abstract ROS middleware interface

RTI Connext OpenSplice CoreDX . . .

optional
access
to DDS
specific API

for more details see:
http://design.ros2.org/articles/ros_middleware_interface.html

DDS message
classes

DDS message
classes

ROS <--> DDS
conversion func.
ROS <--> DDS

conversion func.

ROS Messages
Static code generation

ROS .msg files DDS IDL files

ROS message
classes

DDS message
classes

ROS DDS
conversion func.

can be used without
ROS client library

used by
ROS client library

vendor specific
code generatoruses

DDS message
classes

DDS message
classes

XTypes
DynamicData

mapper

ROS Messages
XTypes DynamicData

ROS .msg files

ROS message
classes

Message speci-
fication in code

can be used without
ROS client library

used by
ROS client library

vendor specific
code

uses

Package resource index

Looking up packages or plugins in ROS 1 requires crawling the filesystem
● conceptionally expensive
● caching only provide some level of improvement

○ trade-off between being outdated vs. recrawling to often

Goal: “answer common questions in constant time”
● which packages are available?
● where is the share-folder of package X?
● query a list of rviz plugins?

Package do require a build step anyway
● Shift the work into the build phase

○ The necessary information is added to an index
● Queries boil down to looking at a known location

in the file system without requiring any crawling
for more details see:

https://github.com/ament/ament_cmake/blob/master/ament_cmake_index/README.md

Current prototype

● Talker / Listener demo
○ Arbitrary messages: all primitive types, fixed-size arrays,

bounded/unbounded arrays, built-in types for Time / Duration,
default values for primitives (yes, really)

● Working with the following DDS implementations:
○ RTI Connext (statically generated code & XTypes DynamicData)
○ PrismTech OpenSplice (statically generated code)

■ of course a talker of impl. A is interoperable with a listener of impl. B ;-)

● Experience so far
○ 1:N communication faster (multicast!)
○ for some vendors: localhost comm done through shared memory
○ optionally reliable message delivery
○ better reconnection behavior when dropping out of wireless

ROS 2 - What else to expect?

● Same API for nodes and nodelets, decide at runtime how to use
● Actions realized as preemptable services with a feedback publisher
● Dynamic reconfigure / node specific parameters as a default,

global parameters belong to the node named “parameter server”

● Better introspection and dynamic configuration of a ROS system
● Deterministic startup of complex systems
● Notification for added / removed nodes and topics etc.

● Better support for various network configurations
● Reliable / best effort communication, QoS parameters
● Better error detection, heartbeat for each node

● Support different platforms and architectures from day one
● Communicate with ROS 1 nodes to enable mixed systems

First released version planned for May 2015
(beside ROS 1.x Jade turtle)

Outlook

Thank you!

