
Industrial Calibration

Chris Lewis

Southwest Research Institute

clewis@swri.org

Motivation

• Push button intrinsic and extrinsic calibration
with predictable accuracy.

• Unified Framework for a wide variety of
calibration tasks

• Automate motion, data collection, and solving

• Package Includes

– Extensive set of cost functions

– Examples

– Tutorial

Calibration Tasks

• Extrinsic calibration of an array of cameras
using an array of targets

• Calibration of robots and cameras
– Cameras observing the work cell

– Cameras mounted on and moving with the robot

• Soon to come
– Intrinsic Calibration

– Stereo Calibration

• Potential Extensions: Kinematic parameters

Node Architecture

Killer
App

MoveIt! Hardware

Robot
And

Joint State
Publishers

Xacro, urdf

Mutable
Joint State
Publisher

Cal_Joints.Yaml

Calibration

Button
Press

Set & Store

Cameras.yaml
Targets.yaml
Scenes.yaml

Tool Mounted Camera

Key Aspects

• Interfaces with MoveIt! to plan and execute
collision free paths between scenes.

• Collect Sufficient Statistics and Geometry

• Interfaces with TF to capture kinematics

• Results immediate and persists with re-launch

• Computes:
– 6Dof transform between tool and camera

– 6Dof transform between robot base and target

• Results: Consistent 3D data regardless of robot
pose

Calibration Primer

• Maximize the consistency of a collection of
observations with the physical model of those
observations by minimizing SSE (re-projection
error).

• Compute the Cost of Each Observed Point
– Project points defined in target’s frame into

camera coordinates

– Project camera points into image

– Compare to observation

Projection
Constants and Parameters

Target
Mount

Target Reference
Frame

Camera
Mount

Camera
Housing

Camera
Optical

Focal Length
Optical Center
Distortion
Model

• Cost functions differ by what is known and what varies
• Extrinsic parameters
• Intrinsic parameters

 a. Target 3Dof(Printing accuracy)
 b. Camera, typically 9Dof
• A robot might hold and move the camera or the target.
• One may want to refine the location of the device doing the holding.
• Cost functions may be written to cover any situation.

Image
plane

Calibration Process

• Collect Observations
– For each static scene

• Wait for scene trigger
• Collect Transform Information
• For each camera in scene

– For each target
» Look for target in ROI
» Add observations to list

• Add each cost to a Ceres problem
• Problem.solve()
• Output Results

– Set and store on the mutable joint state publisher
– Write new static transform publishers

What’s Special?

• Ceres
– Best Optimization Package Ever
– Computes analytic Jacobians from templated cost functions

• Scene Triggers
– MoveIt!

• Joint Value Move
• Cartesian Move

• Camera Observers
– Circlegrids
– Checkerboards
– AR Tags

• Transform Interfaces
– TF
– Mutable Joint State Publisher

• Calibration Results are immediate and persist with subsequent launches

• Library of Ceres Compatible Projection Cost Functions93

Geometry of Viewing Circles

• The center of an observed ellipse is NOT the
projected center of the circular disc. B>C

Image Plane

A

A

B

C

Edge View of
Circle

Best Practices

• Take a Statistically Significant Set of Static Images.
– No Motion Blur
– Image Noise

• Cover Region of Interest
– all the way to the edge, extrapolation is much worse than interpolation
– Move robot to kinematic extents

• Don’t Tilt Your Targets, or Use a Cost Function that Accounts for the Offset
• Don’t Count on Residual Error Alone as an Indication of Accuracy

– High residual error is bad
– Low does not guarantee accuracy

• Use high quality targets
– NIST Traceable if Possible
– Calibrate target if possible
– Lay as flat as possible

Two Asus Sensors Single Shot

Try Some Examples

• https://github.com/ros-
industrial/industrial_calibration_tutorials.git

• calibrate_from_images.launch
– Images Included

– 8 Asus Cameras 4 on tower on either side of target

• camera_scene_cal.launch
– 2 live Asus, as shown in previous video

– Add your own cameras,

– Swap in your own target

https://github.com/ros-industrial/industrial_calibration_tutorials.git
https://github.com/ros-industrial/industrial_calibration_tutorials.git
https://github.com/ros-industrial/industrial_calibration_tutorials.git

Where Are We?

• A few working examples

• Rough tutorials

• Lots of code not covered by gtest

• Experimental

• Needs
– Hybrid Target Detection

• Orientation Aware

• Target ID Aware

– GUI for creating yaml files

