
Reliable Robotics – Diagnostics++

Dominik Kirchner, Daniel Saur

(Distributed System Group, University of Kassel)

Story board

♦ Motivation

♦ Introduction to ROS diagnostics

♦ ROS diagnostics extensions

♦ Takeaways

RosCon 2013 Reliable Robotics - Diagnostics++ 2

RosCon 2013

Robot Failures are facts …

Reliable Robotics - Diagnostics++ 3

RosCon 2013

Robot Failures are facts …

But what to do about it?

Reliable Robotics - Diagnostics++ 4

RosCon 2013

What can we do about it?

♦ We have to correct the problems or avoid the failure.

♦ Problem: You need to know the root cause before you
can correct the problem

♦ Situation (without a diagnostic support):

♦ Limited to visible observations

♦ Limited to developer experiences

♦ Approach (with ROS diagnostics):

♦ Reduce subjective assessment

♦ provide objective data of the state of the system

♦ Filter the data to extract the problem

♦ Notify the operator

Reliable Robotics - Diagnostics++ 5

d
ia

g
n
o
s
ti
c
_
a
g
g
re

g
a
to

r
Analyzer A

Analyzer B

Analyzer C

RosCon 2013

How ROS diagnostics fits in – A short Overview

Reliable Robotics - Diagnostics++ 6

Aggregation/Diagnosis Presentation Monitoring

• diagnostic_updater

• self_test

• diagnostic_aggregator

• rxconsole

• robot_monitor

• PR2_dashboard

diagnostic diagnostic_agg

RosCon 2013

How to provide current status data?

♦ diagnostic_updater provides run-time data for the node‘s state

♦ Supports to embed this code in the node

♦ Unified interface (topic diagnostics, weakly typed message fields)

Reliable Robotics - Diagnostics++ 7

This message holds the status of
an individual component of the robot.

Possible levels of operations
byte OK=0
byte WARN=1
byte ERROR=2

level of operation enumerated above
byte level

a description of the test/component
reporting
string name

a description of the status
string message

a hardware unique string
string hardware_id

an array of values associated with
the status
KeyValue[] values

void callback (DiagnosticStatusWrapper &stat) {
 stat.summary(DiagnosticStatus::WARN,
 "This is a silly updater.");

 stat.add("Stupidicity of this updater", 1000.);
}

int main(int argc, char **argv) {
 // ... some node specific stuff
 // create updater
 diagnostic_updater::Updater updater;
 // name updater
 updater.setHardwareIDf("Device-%i-%i", 27, 46);
 // add a call back to the updater
 updater.add("Function updater", callback);

 while (nh.ok()) {
 // ... some node specific stuff
 pub1.publish(msg);

 updater.update();
 }
}

RosCon 2013

How to diagnose a problem?

♦ Main purpose is to analyzes diagnostic data for presentation

♦ Configurable set of analyzers (plug-ins)

♦ Analyzers are useful for tasks like, grouping, suppressing invalid outputs, …

Reliable Robotics - Diagnostics++ 8

d
ia

g
n
o
s
ti
c
_
a
g
g
re

g
a
to

r

Analyzer A

Analyzer B

Analyzer C

diagnostic

bool ArmControl::match(const std::string name) {

 if (name == this->nodeToAnalyze) return true;

 return false;
}

bool ArmControl::analyze(const boost::shared_ptr<StatusItem> item) {
 if (item->getName() == this->nodeToAnalyze) {
 if (item->hasKey("internal_state_val")) {
 l = boost::lexical_cast<int>(item->getValue("internal_state_val"));

 //decision rules ...
 if (l > 5) this->ruleViolation[0] = 1;

 } else ROS_INFO("internal_state_val not in msg");
 return true;
 }
 return false;
}

vector<boost::shared_ptr<DiagnosticStatus> > ArmControl::report() {
 vector<boost::shared_ptr<DiagnosticStatus> > output;

 /* create and fill the DiagnosticStatus item ... */

output.push_back(ds);
 return output;
}

RosCon 2013

How to present the diagnostic results?

♦ Present the state of the system on a quick view

♦ Detailed information are accessable in a few steps

Reliable Robotics - Diagnostics++ 9

RosCon 2013

REP 107: Diagnostic System

♦ ROS diagnostics is proposed:

♦ to provide operator awareness,

♦ to target hardware drivers only,

♦ to have a default update interval (1Hz),

♦ not to react to failures.

♦ The goal is operator awareness

♦ Results to correct faults afterwards

♦ Diagnostics is targeted for hardware drivers only

♦ “ … adding diagnostics to all software components creates too much noise …”

♦ “ … the burden of logging and analyzing goes up significantly.”

Reliable Robotics - Diagnostics++ 10

RosCon 2013

Problem solved?

♦ … at least diagnostics is the right thing to start

♦ Limitations and shortcomings:

♦ High integration efforts (hand-coded parts)

♦ Limited diagnostic scope (software components)

♦ No generic monitoring support (e.g. third-party modules)

♦ Static update intervals

♦ For improvement we propose some extensions

♦ Generic monitoring to extend the monitoring scope

♦ Model based integration support to limit the hand coded parts

♦ Reactivity to trigger fail-safe and repair functions

Reliable Robotics - Diagnostics++ 11

RosCon 2013

Generic Monitoring: How to extend the scope?

♦ Robot = Software + Hardware

♦ Hardware:

♦ Driver nodes are limited to provided data

♦ Some hardware provides diagnostic data

♦ … but many do not

♦ General hardware diagnostic can not
address application specific requirements

♦ Generic hardware diagnostic agent:

♦ sense electrical values (voltage, current)

♦ sense physical values (temperature, light,
sound, …)

♦ perform (simple) reactions

Reliable Robotics - Diagnostics++ 12

d
ia

g
n

o
s
ti
c

Sensors

et
h

er
n

et

R232 CAN

8 channels for measurement
Modular design (communication board
+ separat measurement board)

RosCon 2013

Generic Monitoring: How to extend the scope?

♦ Only driver nodes are proposed to be monitored (REP 107)

♦ But the system consists of further components

♦ Non-driver ROS nodes

♦ Third party nodes (e.g. nodes with libraries)

♦ Communication links (e.g. depended failures [1])

♦ Extend the monitoring scope

♦ Generic OS information for black-box nodes

♦ Data flow monitoring of depended nodes

♦ Reduce the monitoring overhead

Reliable Robotics - Diagnostics++ 13

active

Component Flow

diagnostic
updater

diagnostic
updater

passive
OS
data

e.g. cpu, mem

communication
data

e.g. rate, value

RosCon 2013

Adaptive Monitoring: How to limit the overhead?

♦ Overhead increases with the extended scope

♦ Individual priority levels to control monitoring
behavior for each node

♦ Adaptation of the monitoring

♦ update rates, history length, mean, variance, …

♦ Limited to a fixed range

♦ Properties

♦ Types: minimum, maximum, range, histogram

♦ Parameters: e.g. the optimal values

♦ Derivation metric defines the relative distance
from the optimum

♦ Significant reduction of the overhead

Reliable Robotics - Diagnostics++ 14

opt.

min.

max.

0 10
priority

a
d
a
p
ta

ti
o

n
 adaptation range

initial adapted

Characteristic

RosCon 2013

Generic Monitoring: How to realize the passive monitoring?

♦ External component for passive monitoring

♦ Poll generic process characteristics for black-
box nodes

♦ Sniff communication for data flow analysis

♦ Design overview

♦ Characteristics to manage the monitoring

♦ Observer to poll the process information

♦ Properties to specify expected values

♦ Model to set up the needed characteristics

Reliable Robotics - Diagnostics++ 15

External Monitoring Component (Care)

d
ia

g
n

o
s
tic

Observer

Property

Model

RosCon 2013

Integration Support

♦ ROS diagnostic relies on manual code and
configuration parameters

♦ Generic monitoring introduced even more
parameters

♦ Data flow monitoring needs an architectural model

♦ Central robot model to unify architectural
information and configuration settings

♦ Tree presentation of the architectural composition

♦ Robot: for global settings

♦ Capability: a semantic grouping for a task relevant
robot features

♦ Functionality: a system node

♦ Channel: a topic between system nodes

Reliable Robotics - Diagnostics++ 16

Cap

R

Func

Ch

I

Cap

Ch

Ch Ch

Func Func

Func

I I

priority characterisitic

RosCon 2013

Integration Support: Robot Model

♦ Intuitive prioritization through hierarchical model structure

♦ Arbitrary configuration blocks, like a generic monitoring configuration

♦ XML description as proof of concept

Reliable Robotics - Diagnostics++ 17

Cap

R

Func

Ch

I

Cap

Ch

Ch Ch

Func Func

Func

I I

priority characterisitic

<?xml version="1.0" encoding="utf-8"?>

<robot name="tasmania" type="Gen10">

 <cap name= "grip" id="2" prio="5" used_in_role="WM09/WM09_Attacker:1">
 <chan name="GripControl" channel="gripCmd">
 <func name= "ArmControl" prio="2" working_dir="%ES_ROOT%/ArmControl/bin"
 filename= "ArmControl" arguments="">

 <charac name="cpuLoad" type="CpuLoad"
 proptype="Range" minvalue="0" maxvalue="200" ></charac>
 <charac name="memUsage" type="MemUsage"
 proptype="Range" minvalue="7000" maxvalue="7500"></charac>
 <charac type="ThreadUsage"
 proptype="Range" minvalue="4" maxvalue="10"></charac>

 </func>
 </chan>
 </cap>
...
</robot>

RosCon 2013

Integration Support: soft diagnosis

♦ Application specific hand-coded rules in the
analyzers

♦ But often we do not know exactly these rules

♦ Uncertainty

♦ Lack of knowledge

♦ Reduce the burden of expert knowledge by
methods of Soft Computing (Bayesian
Networks)

♦ Dynamic Bayesian Networks to introduce
temporal behavior

♦ Graphical modeling support through the
SMILE/GENIE framework [2]

Reliable Robotics - Diagnostics++ 18

GENIE: Graphical Frontend for modeling Bayesian
Networks [2]

RosCon 2013

Autonomous Reactions: An Outlook

♦ Complement operator awareness
with autonomous reactions

♦ MAPE-K cycle as the decision cycle

♦ Work in progress:

♦ Generic monitoring

♦ Diagnostic: Analyzers using soft
diagnosis

♦ Knowledge: robot model to ease
the integration and configuration

♦ Future work:

♦ Recovery planning based an
diagnostic results

♦ Repair execution

Reliable Robotics - Diagnostics++ 19

RoSHA

Knowledge

Repair

Executer Repairer

Recovery

Manager Plan repository

Diagnostic

Analyzers

Monitoring

RoSHA: A Multi-Robot Self-Healing Architecture [3]

RosCon 2013

Takeaways

♦ ROS diagnostics is a great tool, use it!

♦ We identified some shortcommings:

♦ Limited monitoring scope

♦ Integration support

♦ We proposed some extensions to overcome these limits

♦ Adaptive monitoring with individual priorities

♦ Model support to ease the integration

♦ Dynamic Baesian Networks for generic analysis

♦ We presented an outlook of a autonomous reactive system

Reliable Robotics - Diagnostics++ 20

Thank you

RosCon 2013 Reliable Robotics - Diagnostics++ 21

References

[1] J. Weber, F.Wotawa: “Diagnosis and repair of dependent failures in the control system of a mobile
autonomous robot”, Applied Intelligence 36, pp. 511-528, Springer (2008)

[2] M. Druzdzel: “SMILE : A Development Environment for Graphical Decision-Theoretic Models”, 16th National
Conference on Artificial Intelligence, Orlando, Florida (1999)

[3] D. Kirchner, S. Niemczyk, K. Geihs: “RoSHA: A Multi-Robot Self-Healing Architecture”, 17th RoboCup
International Symposium, Eindhoven, Netherlands 2013, (in review)

RosCon 2013 Reliable Robotics - Diagnostics++ 22

RosCon 2013

Reliable Robotics - Diagnostics++ 23

