
MoveIt! Task Constructor
A framework for planning task sequences

Robert Haschke1, Michael Görner2

1 Center of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Germany
2 TAMS Group, Hamburg University, Germany



Motivation



Objectives

• Definition + Planning of non-trivial manipulation sequences
• Modular
• Customizable
• Multiple arms/hands
• Cost-ranking of alternative solutions

• Replace MoveIt‘s manipulation pipeline
• Limited to single-arm pick-and-place
• No introspection

• No Symbolic Task Planning
• Assuming task structure is known
• Planning on level of alternative solution paths



Overview

• Pipeline composed from Stages
• Each stage connects a start to an end InterfaceState

via 1...n SubSolutions



Overview

• Pipeline composed from Stages
• Each stage connects a start to an end InterfaceState

via 1...n SubSolutions

• Stages interface each other via list of InterfaceStates
• Solution = fully-connected path through pipeline



Overview

• Pipeline composed from Stages
• Each stage connects a start to an end InterfaceState

via 1...n SubSolutions

• Stages interface each other via list of InterfaceStates
• Solution = fully-connected path through pipeline

• InterfaceState
• MoveIt’s PlanningScene
• Properties, e.g.

• grasp type 
• end effector to use for grasping



Hierarchical Structuring

• SerialContainer
• Sequential chaining of sub tasks

• ParallelContainer
• Alternatives

• Consider all solutions of children
• Fallback

• Consider children one by one
• Merger

• Combine solutions of children for parallel execution
• Example: arm approaching + hand opening
• Requires extra feasibility check!

• Wrapper
• Filter / duplicate / modify solutions



Semantic Stage Types

• Planning proceeds non-linearly:
• generators: seed for planning
• propagation: advance partial solutions
• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place



Semantic Stage Types

• Planning proceeds non-linearly:
• generators: seed for planning
• propagation: advance partial solutions
• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place



Semantic Stage Types

• Planning proceeds non-linearly:
• generators: seed for planning
• propagation: advance partial solutions
• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place



Semantic Stage Types

• Planning proceeds non-linearly:
• generators: seed for planning
• propagation: advance partial solutions
• connectors: connect partial solutions

• Example: Pick-n-Place with Handover

↕ current state
∞ connect
↕ pick with right hand
↓ move to handover pose
∞ connect
↕ pick with left hand
↓ move to place



Stage Types by Interface

• Type determined by what is read from / written to interfaces

• Generator
• No reading, Write to both interfaces
• Examples: CurrentState, FixedState, GraspGenerator

• Propagator
• Read from one, write to opposite interface
• Examples: Approach, Lift

• Connector
• Read both interfaces
• Combinatorial explosion
• Check compatibility of states



Stage Types by Interface

• Type determined by what is read from / written to interfaces

• Generator
• No reading, Write to both interfaces
• Examples: CurrentState, FixedState, GraspGenerator

• Propagator
• Read from one, write to opposite interface
• Examples: Approach, Lift

• Connector
• Read both interfaces
• Combinatorial explosion
• Check compatibility of states



↕ current state
∞ connect
↕ pick
∞ connect
↕ place

MonitoringGenerator

• Generator might need input 
from a remote stage
• Grasp/Place an object

at the current position

• MonitoringGenerators 
hook into solutions of another stage



Available Primitive Stages

• Generators
• Fetch current Planning Scene from move_group
• Cartesian pose generator / sampler
• ComputeIK
• Simple grasp generator

• Propagator
• MoveTo: plan towards absolute goal
• MoveRelative: plan relative motion
• Manipulate Planning Scene

• Attach / Detach objects
• Modify ACM

• Connect

Joint space or
Cartesian space



Providing Custom Stages

class MyStage : public PropagatingForward {

public:

MyStage(string name);

void computeForward(const InterfaceState& from) override
{

...

SubTrajectory solution(trajectory, cost, comment);
solution.markers().push_back(marker);

sendForward(from, move(end_scene), move(solution));
};

};



Task Code Example

Task task;

auto initial = make_unique<CurrentState>();

task.add(move(initial));
...

auto grip = make_unique<MoveTo>("grip", planner);
grip->setGroup("gripper");

grip->setGoal("closed");

task.add(move(grip));
...

if(task.plan())
execute(task.solutions()[0]);

MoveIt pipeline
Straight-line

Cartesian space
Joint space



A more complex example: Pouring



A more complex example: Pouring



Introspection



Outlook: Envisioned Features

• Drop-In replacement for MoveIt‘s Pick+Place capability
• Interactive GUI

• Configure + validate task pipeline in rviz
• Save / load YAML
• C++ / python code generation

• Execution Handling
• Premature execution of planned sub tasks
• Choose controllers for sub tasks (force control, servoing, …)
• Failure handling

• Replan from current situation
• Revert to previous stage



Scheduling

• Find „good“ solutions fast!

• Priority queues @ different levels
1. InterfaceState: remember best solution only
2. InterfaceStateList: sort by length and acc. cost of partial solution
3. Stage scheduling (TODO)

• Interface type
• success rate
• estimated computation time

• Compute stages in parallel threads



Python Wrapper (wip)

• Using Boost Python
• Data transfer via:

• ROS msgs
• serialized strings
• Boost Python‘s type conversion magic

C++

Python

serialization/deserialization

serialized string
serialization/deserialization

task = core.Task()
task.add(CurrentState("current"))
move = MoveTo("move", PipelinePlanner())
move.group = "arm"
goal = RobotState()
…
move.setGoal(goal)
task.add(move)

if task.plan():
task.execute(task.solutions[0]) 



World MoveIt Day: October 25 2018



• https://github.com/ros-planning/moveit_task_constructor
• https://github.com/ubi-agni/mtc_demos
• https://github.com/tams-group/mtc_pour

@IROS 2018 Mobile Manipulation Hackathon

https://github.com/ros-planning/moveit_task_constructor
https://github.com/ubi-agni/mtc_demos
https://github.com/ubi-agni/mtc_pour

