ROS for Education and Applied Research: Practical Experiences

Ralph SEULIN*, Raphael DUVERNE*, Olivier MOREL*, Cansen JIANG*, Jeremie DERAY**, Jordi PAGES**, Lee KIAN SENG***, Remi GROSLEVIN*, Cedric DEMONCEAUX*, David FOFI*, Yohan FOUGEROLLE*

*CNRS UMR 6306 / University of Bourgogne Franche-Comté - FRANCE ** PAL Robotics - Barcelona - SPAIN *** Universiti Teknologi PETRONAS - MALAYSIA

ROSCon 2015 - Hamburg - October 3-4, 2015

European Master in VIsion & roBOTics (ViBot)

> Erasmus Mundus Programme

Context of Work

University of Burgundy - FRANCE

> Girona Univ. & Heriot-Watt Univ. Edinburgh

✓ Le2i Research Group

>Image Processing, Computer Science and Electronics

>Non-Classical Imaging

vibot

aboratoire Electronique

nformatique

Motivations

Share our experience of ROS with the dev. community

✓ Started in 2013

2 Challenges in Computer Vision & Mobile Robotics

>Introduction Modules for Education Programs

>Research & Development (Internships, Projects, Applications, ...)

✓Unique Platform

Outline

Learn, Teach, Search & Develop

- 1. Learning ROS
- 2. Education
 - ✓ BSc & MSc Programs
- 3. Research
 - Omnidirectional Vision for Mobile Robotics
- **4. Application Development**
 - ✓ 3D Vision for Precision Agriculture
- **5.** Conclusion

ROSCon & Shows (Innorobo, ...)

How we teach ROS

Intensive Training Sessions (40 hours + Practice)

>Tutorials

- Introduction to the Middleware
- Packages, Simulation & Basic Control
- Nodes with Python Programming & Launch Files
- C++ Programming

TurtleBot2

>Technical Workshop, Summer School

Education How we teach ROS /Project Development

> Robotics Laboratory

How we teach ROS Project Development (~250 hours)

>BSc

Part 1 - Motion Control

twist, odometry, move_base

Part 2 - Planar Laser RangeFinder

RoboPeak RP-Lidar, tf, turtlebot

Part 3 - Navigation & Localization move_base, gmapping, amcl

How we teach ROS

✓BSc Robotics Projects - Indoor Navigation with TurtleBot2

How we teach ROS Project Development (~250 hours)

>MSc = BSc + Computer Vision Tasks

Patrolling with Tasks: Tag / Face Recognition, Search and Rescue, Fire Escape, …

How we teach ROS

MSc Robotics Projects - Indoor Patrolling with TurtleBot2

How we teach ROS✓ Education Project UTP - UAV Tag Tracking

ardrone_autonomy , artoolkit

"Autonomous patrol and surveillance system using unmanned aerial vehicles", 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1291- 1297

Research Project

Omnidirectional Vision for Mobile Robotics Omnidirectional Compact Sensor - Principle

Fisheye Lens -> Wide Angle of View ~185°

2 Non-Overlapping Fisheye Cameras

-> Full Panoramic Spherical View

Research Project

Omnidirectional Vision for Mobile Robotics Omnidirectional Compact Sensor - Camera Rig

- 2 x IDS-Imaging uEye USB 3.0 Camera UI-3240CP
- 2 x Fisheye Lens FUJINON FE185C046HA-1

<u>Acquisition:</u> ueye stereo, message_filters <u>Spherical Image:</u> https://github.com/artivis

Research Project

Omnidirectional Vision for Mobile Robotics
Omnidirectional Compact Sensor

>Localization & Telepresence

Oculus Rift

Fish-eye cameras - 360 degrees FoV ego-centred view

Application Development

- **3D** Vision for Precision Agriculture
- ✓Burgundy Viticulture
 - -> Sustainable Spray Application of Phytosanitary Products
- ✓Adapt Amount of Applied Products w/r Leaf Density of the Vineyard Rows

Application Development 3D Vision for Precision Agriculture Prototype for 3D Vineyard Canopy Analysis

Robotnik SUMMIT XL

- LiDAR Sensor
 - ✓ HOKUYO UTM-30-LX
- Odometry
 - 4 Wheel Encoders
- Gyroscope
 - CRG20 Silicon Sensing

Application Development

3D Vision for Precision Agriculture

summit_xl, tf, hokuyo_node, laser_pipeline

Application Development 3D Vision for Precision Agriculture

0%	0%	0%	0%	1%	4%	5%	12%
2%	0%	0%	0%	13%	37%	23%	60%
13%	17%	9%	7%	23%	40%	57%	59%
11%	13%	11%	10%	17%	8%	23%	9%
Net See			1	and the			

laser_assembler, laserscan2pointcloud2, pcl

Application Development

3D Vision for Precision Agriculture

Conclusion ROS for Education and Applied Research

✓ How to use ROS from scratch ?

>Training & Networking

> Practice -> TurtleBot2

✓ ROSified Hardware

✓ ROS for Instrumentation

> OpenSource Acquisition & Processing Platform

ROS for Education and Applied Research: Practical Experiences

Ralph SEULIN*, Raphael DUVERNE*, Olivier MOREL*, Cansen JIANG*, Jeremie DERAY**, Jordi PAGES**, Lee KIAN SENG***, Remi GROSLEVIN*, Cedric DEMONCEAUX*, David FOFI*, Yohan FOUGEROLLE*

*CNRS UMR 6306 / University of Bourgogne Franche-Comté - FRANCE ** PAL Robotics - Barcelona - SPAIN *** Universiti Teknologi PETRONAS - MALAYSIA

ROSCon 2015 - Hamburg - October 3-4, 2015