
Development of dual arm mobile manipulation systems for small part assembly tasks

Alexander Bubeck, Benjamin Maidel, Felipe Garcia Lopez, Lorenz Halt, Alexander Koch ROSCon 2014 Chicago

Outline

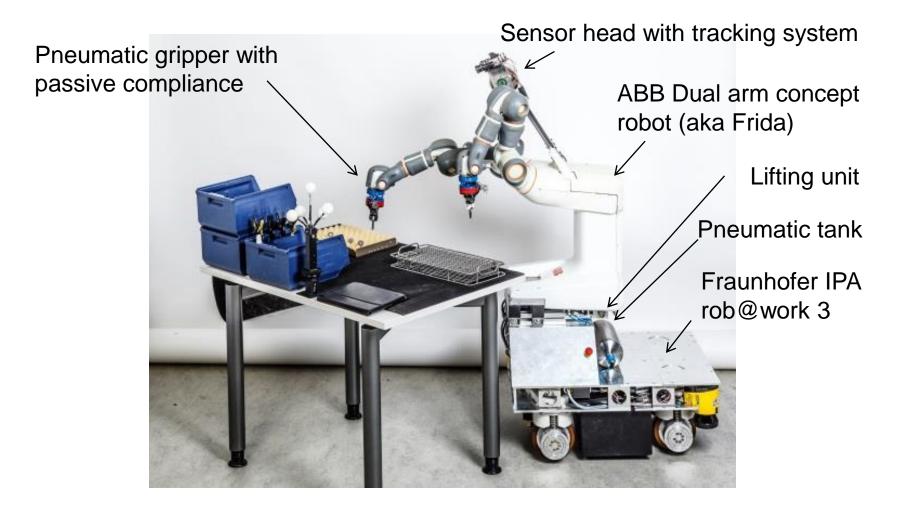
- Introduction to the PRACE Project
- Interfacing the ABB dual robot with the ROS industrial stack
- Planning dual arm motions with Movelt!
- Rapid application development for a dual arm mobile manipulator
- Summary

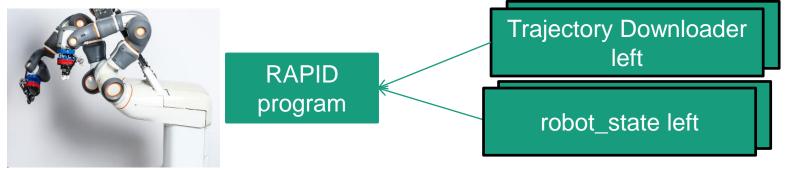
- PRACE The Productive Robot Apprentice
 - Development of a mobile dual arm robot system for the automation of small batch assembly processes
 - Automation during scale up processes (small lots, flexible processes)
 - Application development on site by factory worker as an assistant

- FoF EU Project with partners: Bosch, DTI, ABB, Lund University, Magellium and Fraunhofer IPA
- Project period: Nov. 2011 Oct. 2014

APAS System by Bosch

PRACE Use cases


- Small part coating processes
- Palletizing of needles
- Different shapes and trays


PRACE The dual arm mobile manipulator

Interfacing the dual arm manipulator Basic ros-industrial interface

- ABB dual arm manipulator has standard ABB controller in it's body
- Two industrial-client instances running, one for each arm
- Industrial-client can be run without change
- Extension of RAPID script to support 7 DOF and two arms

Performance slow due to large TCP/IP overhead, trajectory points are submitted separately

Interfacing the dual arm manipulator Performance extensions

Extending the RAPID/industrial_client setup with an additional message type

- Extending default size of simple_message from 1024 Byte to 16000 Byte
- Submission of all Trajectory points at once
 - \rightarrow Large improvement of submission of motion commands (1/10)

Additional msg type to support Cartesian trajectory points

Planning dual arm motions with Movelt! Configuration and setup

Configuration of 3 separate move_groups:

- one for each arm
- one for both arms (with all 14 DoF)
- More move_groups because of multiple "tools" (gripper, camera, tool exchanger)
- Simplification of trajectories problematic

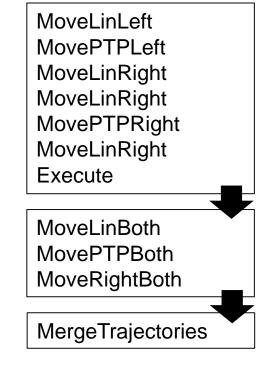
Development of applications with two arms is difficult !

https://vimeo.com/106815072

https://vimeo.com/106815073

https://vimeo.com/106815076

Planning dual arm motions with Movelt! Comparison of IK Solvers


- Applications included multiple linear Cartesian motions
- ABB robot has small joint constraints
- Movelt!:
 - KDL \rightarrow often reconfigurations
 - IKFast → often no solution
 - LMA (Levenberg-Marquardt) \rightarrow better performance then KDL
 - You gain collision checking
- ABB controller \rightarrow Extension of industrial_client
 - Reliability
 - Performance
 - Repeatability

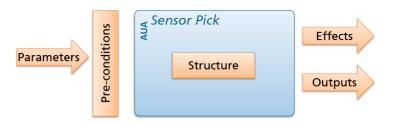
Planning dual arm motions with Movelt! Dual Arm Motion Scheduler

- Queuing of multiple motion commands (ActionServer)
- Synchronization command
- Scheduling of both manipulators to generate dual arm motion requests
- Merging of planning results to generate one motion trajectory after each sync (performance)
- Lookup of move_groups

http://github.com/ipa320/prace_control

https://vimeo.com/106815079

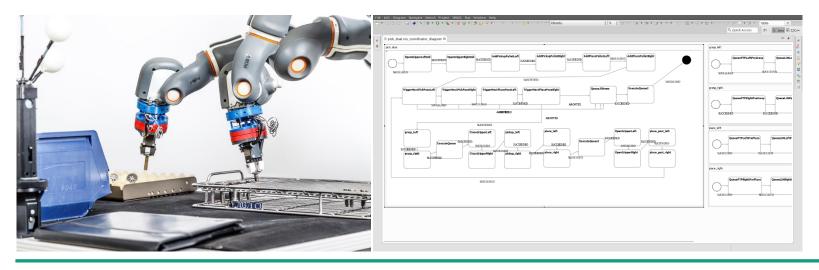
Dual arm manipulation with Movelt! + ros-industrial Challenges


- Exchangeability of implementation of Cartesian motion with industrial manipulators
- Standardization of Cartesian interfaces
- Movelt! documentation regarding trouble shooting could be better
- Calibration of kinematic properties to URDF model is hard
 - Visual calibration
 - Downloading of kinematic data from controller

Rapid application development Concept: Task development with AUA's

Development of High-level "Assembly Unit Actions":

- AUA: platform-independent parts of an application that represent a functionality of the robot system
- Every robot system implements a specific implementation of a number of AUA's
- AUA's consist of a formal description of parameters, pre/post-conditions and effects
- End users develop applications by assembling AUA's


Rapid application development Model driven task development system

- Formal description of AUA's based on model driven engineering
- Development of a model driven engineering tool chain for Rapid Robot Application Development
 - Clear separation of capabilities, coordination and configuration of the robot system
 - BRIDE as an engineering tool chain for the implementation of AUA's
 - Integration in the coordinator development editor
 - Separation of AUA's and Primitives

Rapid application development PRACE development workflow

- Robot developer creates AUA's state machines with BRIDE
- Exports these state machines as "AUA's"
- Selects state configuration that can be configured by end user
- AUA' appears on end-user GUI
 - \rightarrow Solution for fast and easy configuration required

Rapid application development Configuration of AUA's and primitives

cob_teacher

- Parses yaml files holding rosmsg entries
- Visualizes fields of rosmsg's for input
- Allows the usage of "teacher_plugins" for common rosmsg types
- Configuration of applications with multiple modalities
 - Teach-In handle
 - Touchup
 - Perception system

https://vimeo.com/106815080

Rapid application development Tracking devices as teacher plugins

Optitrack

- specific HW
- TIY <u>https://code.google.com/p/tiy/</u>
 - arbitrary IR stereo camera system
- Commercial system by Magellium
 - regular monocular color camera

Rapid application development Configuration of AUA's by the end user

Configuration of sequences of AUA's with Web-GUI

Fraunhofer IPA PRACE		🕨 II 🔳 🍖 🍖 🖨 Options 🗸
/move_ptp	/move_lin	× × -
/move_lin	• /move_base	· · ·
Skill Provider: /rosWebGateway Skill Topic: /move_lin/goal Skill Type: /move_lin	O /move to table	· · · -
/move_base	Skill Provider: /rostopic_11116_1406036201842 Skill Topic: /move_ptp Skill Type: /move_ptp	
	O /move base	× × -

Deployment Examples from factory tests

https://vimeo.com/106816110

Teaching dual arm motion with tactile feedback

Summary and Outlook

Dual arm mobile manipulation systems for small part assembly tasks

- Usage of ros_industrial driver with the ABB dual arm concept robot
- Usage of Movelt! for precise dual arm motion planning
- Implementation of a rapid application development system
- Currently process of revising and open sourcing the work
- Demonstrator will be used after the project by Bosch and Fraunhofer IPA
- Continue to use rapid application development system in other projects

More information: <u>http://prace-fp7.eu</u>

