

Faster Planetary Rover Traversal

Project Overview:

- Planetary rovers move very slowly
 - A number of mission critical hazards
 - Manually planned, simulated commands
- Faster traversal for exploration rovers
- Forward detection of terrain hazards

System Components:

- Primary Rover
 - (ExoMars Locomotion Platform)
- Scout Rover
- Soil Sensors
- Cooperative Autonomy

Software Architecture

Scout Rover with minimal autonomy – path following
 Primary Rover performs significant computation
 Implementation using G^{en}oM/ROS combination

– Task Planning – GNC

- Mapping
- Localization
- Path planning
- Scout
 Localization
 - Vision based

LIQUIFER Systems group

Validation in Simulation

- → Gazebo / USARSim
- Environment models
 - → Using Mars terrain maps from HiRISE imager

➔ Rover models

- Scout Rover model implemented
- ExoMars breadboard model

Thank you!

Yashodhan Nevatia Space Applications Services yn@spaceapplications.com

https://www.faster-fp7-space.eu/

botics Innovation Center

