

From simulation to real robots

Introduction

Simulation vs. real robot

- Simulations allow
 - Easy and fast development
 - Save operation of untested algorithms
 - Repeatability
- But suffer from
 - Simulation accuracy
 - Real world dynamics and timing
 - Often different interfaces compared to real robots

"I HAVE A BAD FEELING ABOUT THIS DEMO."

WHAT MUST WE DO TO BRING SIMULATION CLOSE TO REAL ROBOTS?

Choosing Simulation environment

- Player/Gazebo free but lacks e.g. multi camera support
- Webots commercial, very expensive
- Deltra3D free but it seems to be fairly inactive
- USARSim free, used by e.g. the RoboCup

=> USARSim chosen

USARSim

A high-fidelity simulator

- Based on Unreal Tournament game engine
- moderate hardware requirements, high speed physics engine and rendering capabilities
- Simulation of all important types of robots with adjustable parameters:
 - Wheeled robots Car-like (2WD and 4 WD), Differential drive, ...
 - Arial robots Quadrocopter, …
- Simulation of most important sensors:
 - Range (LODAR, sonar, IR)
 - Position (INS, GPS, Wheel sensors)
 - Camera (Multi camera views)

How to integrate a real robot in USARSim?

USARSim setup

- Setting up robot using existing USARSim models and sensors
- Adjusting parameters to fit the real robot

Develop maps according to real facilities

How to integrate a real robot in USARSim?

Problem: Different interfaces of simulation and robot systems (single connection vs.

How to break the single simulation connection?

Overview

sim

How to enable multi-node architecture?

- SimulationCore extended by service registerExternalDriver
 - Special extDriver added to DriverSelector once services is called
 - No processing of data and publishing as normal ROS data types by extDriver
 - Data serialized and published over special extDriverPublisher
- ExternalDriverNode
 - Calls registerExternalDriver service (sets extDriverPublisher topic)
 - Subscribe to extDriverPublisher topic
 - Deserialize data, and do all processing (existing drivers may be foundation)

Use-Case: SiNafaR overview

The rough...

Use-Case: SiNafaR overview

.. And the fine view

From simulation to real robots

... and a screenshot of the GUI

Conclusion

- Benefits of using simulation in aspects of cost, efficiency, ...
- Complete and dynamic integration of USARSim simulation environment into ROS and ROSenabled robots
- Easy change between simulation and real robots (matter of exchanging one module)
- Multi node architecture in simulation and reality
- Reuse of existing driver code in simulations
- Use of the stockpile of ROSs modules possible

Future Work

- Bidirectional communication between externalDriverNodes and Simulation
- Configuration of robot sensor systems using launchfiles
- Analysis of overhead of the presented system
- Calibration of simulated cameras

Thank you!

Questions?